Patient Search
![]() |
![]() |
KaCrole Higgins was diagnosed with breast cancer in 2020. “In May 2020, I found a lump in my breast. I cried. By June, it was diagnosed as breast cancer, triple positive, stage 1A. While getting this cancer diagnosis was devastating, it also became an opportunity. Suddenly, the cancer gave me clarity. It gave me clarity about what was important, what was good in my life, what was toxic in my life, and what I needed to do.” Click below to read more of KaCrole’s story |
If Landon Ryan had been diagnosed with bilateral retinoblastoma 10, 20 or 30 years ago, she might not be here today with nearly perfect vision.Thanks to recent improvements in the treatment for this rare form of cancer that almost exclusively affects children under the age of 5, the diagnosis had the power to change Landon’s life when she was 11 months old, but not to take it — or her eyesight. Click below to learn more about Landon and her story. https://momentum.vicc.org/2022/04/brighter-outlook/ |
Tiragolumab and Atezolizumab for the Treatment of Relapsed or Refractory SMARCB1 or SMARCA4 Deficient Tumors
Pediatrics
Pediatrics
This phase I/II trial studies how well tiragolumab and atezolizumab works when given to children and adults with SMARCB1 or SMARCA4 deficient tumors that that has either come back (relapsed) or does not respond to therapy (refractory). SMARCB1 or SMARCA4 deficiency means that tumor cells are missing the SMARCB1 and SMARCA4 genes, seen with some aggressive cancers that are typically hard to treat. Immunotherapy with monoclonal antibodies, such as tiragolumab and atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
Pediatrics
I/II
Borinstein, Scott
NCT05286801
COGPEPN2121
Testing the Combination of the Anti-Cancer Drugs Temozolomide and M1774 to Evaluate Their Safety and Effectiveness
This phase I/II trial studies the side effects and best dose of temozolomide and M1774 and how well they works in treating patients with cancer that has spread from where it first started (primary site) to other places in the body (metastatic) and may have spread to nearby tissue, lymph nodes, or distant parts of the body (advanced). Temozolomide is in a class of medications called alkylating agents. It works by damaging the cell's deoxyribonucleic acid (DNA) and may kill tumor cells and slow down or stop tumor growth. M1774 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Adding M1774 to temozolomide may shrink or stabilize cancer for longer than temozolomide alone.
Not Available
I/II
Davis, Elizabeth
NCT05691491
VICCPHI10572
LEGEND Study: EG-70 in NMIBC Patients BCG-Unresponsive and High-Risk NMIBC Incompletely Treated With BCG or BCG-Nave
This study will evaluate the safety and efficacy of intravesical administration of EG-70 in
the bladder and its effect on bladder tumors in patients with NMIBC.
This study study consists of two phases; a Phase 1 dose-escalation to establish safety and
recommended the phase 2 dose, followed by a Phase 2 study to establish how effective the
treatment is.
The Study will include patients with NMIBC with Cis for whom BCG therapy is unresponsive and
patients with NMIBC with Cis who are BCG-nave or inadequately treated.
the bladder and its effect on bladder tumors in patients with NMIBC.
This study study consists of two phases; a Phase 1 dose-escalation to establish safety and
recommended the phase 2 dose, followed by a Phase 2 study to establish how effective the
treatment is.
The Study will include patients with NMIBC with Cis for whom BCG therapy is unresponsive and
patients with NMIBC with Cis who are BCG-nave or inadequately treated.
Not Available
I/II
Chang, Sam
NCT04752722
VICC-DDURO24102P
Testing the Combination of New Anti-cancer Drug Peposertib with Avelumab and Radiation Therapy for Advanced/Metastatic Solid Tumors and Hepatobiliary Malignancies
This phase I/II trial studies the best dose and side effects of peposertib and to see how well it works with avelumab and hypofractionated radiation therapy in treating patients with solid tumors and hepatobiliary malignancies that have spread to other places in the body (advanced/metastatic). Peposertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as avelumab, may help the bodys immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving peposertib in combination with avelumab and hypofractionated radiation therapy may work better than other standard chemotherapy, hormonal, targeted, or immunotherapy medicines available in treating patients with solid tumors and hepatobiliary malignancies.
Not Available
I/II
Heumann, Thatcher
NCT04068194
VICC-NTGIT24020
Safety and Preliminary Anti-Tumor Activity of TYRA-300 in Advanced Urothelial Carcinoma and Other Solid Tumors With FGFR3 Gene Alterations
The purpose of this study is to evaluate the safety, tolerability, pharmacokinetics (PK), and
preliminary antitumor activity of TYRA-300 in cancers with FGFR3 activating gene alterations,
including locally advanced/metastatic urothelial carcinoma of the bladder and urinary tract
and other advanced solid tumors.
preliminary antitumor activity of TYRA-300 in cancers with FGFR3 activating gene alterations,
including locally advanced/metastatic urothelial carcinoma of the bladder and urinary tract
and other advanced solid tumors.
Not Available
I/II
Berlin, Jordan
NCT05544552
VICCPHI2261
Phase 1/2 Study of MRTX1719 in Solid Tumors With MTAP Deletion
This is a Phase 1/2, open-label, multicenter, study of the safety, tolerability, PK, PD, and
anti-tumor activity of MRTX1719 patients with advanced, unresectable or metastatic solid
tumor malignancy with homozygous deletion of the MTAP gene.
anti-tumor activity of MRTX1719 patients with advanced, unresectable or metastatic solid
tumor malignancy with homozygous deletion of the MTAP gene.
Not Available
I/II
Davis, Elizabeth
NCT05245500
VICC-DTPHI23101P
Study of LY3537982 in Cancer Patients With a Specific Genetic Mutation (KRAS G12C)
The purpose of this study is to find out whether the study drug, LY3537982, is safe and
effective in cancer patients who have a specific genetic mutation (KRAS G12C). Patients must
have already received or were not able to tolerate the standard of care, except for specific
groups who have not had cancer treatment. The study will last up to approximately 4 years.
effective in cancer patients who have a specific genetic mutation (KRAS G12C). Patients must
have already received or were not able to tolerate the standard of care, except for specific
groups who have not had cancer treatment. The study will last up to approximately 4 years.
Not Available
I/II
Not Available
NCT04956640
VICCTHOP2155
A Study of Oral TP-3654 in Patients With Myelofibrosis
This study is a Phase 1/2, multicenter, dose-escalation, open-label trial to assess safety,
tolerability, pharmacokinetics and pharmacodynamics of TP-3654 in patients with intermediate
or high-risk primary or secondary MF.
tolerability, pharmacokinetics and pharmacodynamics of TP-3654 in patients with intermediate
or high-risk primary or secondary MF.
Not Available
I/II
Kishtagari, Ashwin
NCT04176198
VICC-DTHEM23002P
Testing the Addition of the AKT Inhibitor, Ipatasertib, to Treatment with the Hormonal Agent Megestrol Acetate for Recurrent or Metastatic Endometrial Cancers
This phase Ib/II trial tests the safety, side effects, best dose, and effectiveness of the combination of ipatasertib with megestrol acetate to megestrol acetate alone in patients with endometrial cancer that has come back (recurrent) or has spread to other places in the body (metastatic). Ipatasertib may stop the growth of tumor cells and may kill them by blocking some of the enzymes needed for cell growth. Megestrol acetate lowers the amount of estrogen and also blocks the use of estrogen made by the body. This may help stop the growth of tumor cells that need estrogen to grow. The combination of ipatasertib and megestrol acetate may be more effective in treating endometrial cancer than megestrol acetate alone.
Not Available
I/II
Crispens, Marta
NCT05538897
NRGGYNGY028
Testing the Addition of a New Anti-cancer Drug, M3814 (Peposertib), to Radiation Therapy for Localized Pancreatic Cancer
This phase I/II trial studies the side effects and best dose of M3814 and to see how well it works when given together with radiation therapy in treating patients with pancreatic cancer that cannot be removed by surgery and has not spread to other parts of the body (localized). M3814 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving M3814 and hypofractionated radiation therapy together may work better than radiation therapy alone in the treatment of patients with localized pancreatic cancer.
Not Available
I/II
Cardin, Dana
NCT04172532
NCIGIP10366