Skip to main content

Patient Search

KaCrole Higgins was diagnosed with breast cancer in 2020. “In May 2020, I found a lump in my breast. I cried. By June, it was diagnosed as breast cancer, triple positive, stage 1A. While getting this cancer diagnosis was devastating, it also became an opportunity. Suddenly, the cancer gave me clarity. It gave me clarity about what was important, what was good in my life, what was toxic in my life, and what I needed to do.” Click below to read more of KaCrole’s story

https://momentum.vicc.org/2022/04/cancer-gave-me-clarity/

If Landon Ryan had been diagnosed with bilateral retinoblastoma 10, 20 or 30 years ago, she might not be here today with nearly perfect vision.Thanks to recent improvements in the treatment for this rare form of cancer that almost exclusively affects children under the age of 5, the diagnosis had the power to change Landon’s life when she was 11 months old, but not to take it — or her eyesight. Click below to learn more about Landon and her story.

https://momentum.vicc.org/2022/04/brighter-outlook/
Displaying 21 - 30 of 57

Outpatient Administration of Teclistamab or Talquetamab for Multiple Myeloma

Multiple Myeloma

This is a phase II study to evaluate the outpatient administration of Teclistamab or Talquetamab in Multiple Myeloma patients
Multiple Myeloma
II
Baljevic, Muhamed
NCT05972135
VICCPCL24566

Testing the Use of Ado-Trastuzumab Emtansine Compared to the Usual Treatment (Chemotherapy With Docetaxel Plus Trastuzumab) or Trastuzumab Deruxtecan for Recurrent, Metastatic, or Unresectable HER2-Expressing Salivary Gland Cancers

Head/Neck

This phase II trial compares the effect of usual treatment of docetaxel chemotherapy plus trastuzumab, to ado-emtansine (T-DM1) in patients with HER2-postive salivary gland cancer that has come back (recurrent), that has spread from where it first started (primary site) to other places in the body, or cannot be removed by surgery (unresectable). This trial is also testing how well trastuzumab deruxtecan works in treating patients with HER2-low recurrent or metastatic salivary gland cancer. Trastuzumab is a form of targeted therapy because it works by attaching itself to specific molecules (receptors) on the surface of cancer cells, known as HER2 receptors. When trastuzumab attaches to HER2 receptors, the signals that tell the cells to grow are blocked and the cancer cell may be marked for destruction by body's immune system. Trastuzumab emtansine contains trastuzumab, linked to a chemotherapy drug called emtansine. Trastuzumab attaches to HER2 positive cancer cells in a targeted way and delivers emtansine to kill them. Trastuzumab deruxtecan is a monoclonal antibody called traztuzumab, linked to a chemotherapy drug called deruxtecan. Trastuzumab is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as HER2 receptors and delivers deruxtecan to kill them. Docetaxel is in a class of medications called taxanes. It stops cancer cells from growing and dividing and may kill them. Trastuzumab emtansine may work better compared to usual treatment of chemotherapy with docetaxel and trastuzumab or trastuzumab deruxtecan in treating patients with recurrent, metastatic or unresectable salivary gland cancer.
Head/Neck
II
Choe, Jennifer
NCT05408845
NRGHN010

Cabozantinib for Patients With Recurrent or Progressive Meningioma

Neuro-Oncology

A Phase II Study of Cabozantinib for Patients with Recurrent or Progressive Meningioma
Neuro-Oncology
II
Mohler, Alexander
NCT05425004
VICC-ITNEU23261

A Randomized Study of ASTX727 With or Without Iadademstat in Advanced Myeloproliferative Neoplasms (MPNs)

Leukemia

This phase II trial compares the effect of ASTX727 in combination with iadademstat to ASTX727 alone in treating patients with accelerated or blast phase Philadelphia chromosome negative myeloproliferative neoplasms (MPNs). ASTX727 is a combination of two drugs, cedazuridine and decitabine. Cedazuridine is in a class of medications called cytidine deaminase inhibitors. It prevents the breakdown of decitabine, making it more available in the body so that decitabine will have a greater effect. Decitabine is in a class of medications called hypomethylation agents. It works by helping the bone marrow produce normal blood cells and by killing abnormal cells in the bone marrow. Iadademstat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving ASTX727 in combination with iadademstat may be more effective than ASTX727 alone in treating patients with accelerated or blast phase Philadelphia chromosome negative MPNs.
Leukemia
II
Kishtagari, Ashwin
NCT06661915
ETCHEM10675

Inotuzumab Ozogamicin in Treating Younger Patients With B-Lymphoblastic Lymphoma or Relapsed or Refractory CD22 Positive B Acute Lymphoblastic Leukemia

This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
Not Available
II
Not Available
NCT02981628
COGAALL1621

Testing the Use of AMG 510 (Sotorasib) and Panitumumab as a Targeted Treatment for KRAS G12C Mutant Solid Tumor Cancers (A ComboMATCH Treatment Trial)

This phase II ComboMATCH treatment trial tests how well AMG 510 (sotorasib) with or without panitumumab works in treating patients with KRAS G12C mutant solid tumors that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Sotorasib is in a class of medications called KRAS inhibitors. It works by blocking the action of the abnormal protein that signals cancer cells to multiply. This helps stop or slow the spread of cancer cells. Panitumumab is in a class of medications called monoclonal antibodies. It works by slowing or stopping the growth of cancer cells. Giving combination panitumumab and sotorasib may kill more tumor cells in patients with advanced solid tumors with KRAS G12C mutation.
Not Available
II
Choe, Jennifer
NCT05638295
ECOGMDEAY191-E5

MAGIC Ruxolitinib for aGVHD

Multiple Cancer Types

This clinical trial will study ruxolitinib-based treatment of acute graft-versus-host-disease (GVHD) that developed following allogeneic hematopoietic cell transplant. Acute GVHD occurs when donor cells attack the healthy tissue of the body. The most common symptoms are skin rash, jaundice, nausea, vomiting, and/or diarrhea. The standard treatment for GVHD is high dose steroids such as prednisone or methylprednisolone, which suppresses the donor cells, but sometimes there can be either no response or the response does not last. In these cases, the GVHD can become dangerous or even life threatening. High dose steroid treatment can also cause serious complications. Researchers have developed a system, called the Minnesota risk system, to help predict how well the GVHD will respond to steroids based on the symptoms present at the time of diagnosis. The Minnesota risk system classifies patients with newly diagnosed acute GVHD into two groups with highly different responses to standard steroid treatment and long-term outcomes. This protocol maximizes efficiency because all patients with grade II-IV GVHD are eligible for screening and treatment is assigned according to patient risk. Patients with lower risk GVHD, Minnesota standard risk, have high response rates to steroid treatment. In this trial the researchers will test whether ruxolitinib alone is as effective (non-inferior) as steroid-free therapy and safe. Patients will be randomized to two different doses of ruxolitinib to identify the dose which maximizes efficacy while minimizing toxicities such as hematologic and infectious toxicities. Patients with higher risk GVHD, Minnesota high risk, have unacceptable outcomes with systemic corticosteroid treatment alone and the researchers will test whether adding ruxolitinib, a proven effective second line GVHD treatment, can improve outcomes when added to systemic corticosteroids as first line treatment.
Leukemia, Lymphoma, Multiple Myeloma, Myelodysplastic Syndrome
II
Kitko, Carrie
NCT06936566
VICCCTT25042

(Z)-Endoxifen for the Treatment of Premenopausal Women With ER+/HER2- Breast Cancer

Breast

This open-label research study is studying (Z)-endoxifen as a possible treatment for pre-menopausal women with ER+/HER2- breast cancer. (Z)-endoxifen belongs to a group of drugs called selective estrogen receptor modulators or "SERM", which help block estrogen from attaching to cancer cells. This study has two parts: a pharmacokinetic part and a treatment part.

The PK part (how the body processes the drug) will enroll about 18 participants. All participants will take (Z)-endoxifen capsules daily. Twelve participants will be randomly assigned (50/50 chance) to take (Z)-endoxifen alone or (Z)-endoxifen with a monthly injection of goserelin a drug that temporarily stops the ovaries from making estrogen. This part will help determine the best dose of (Z)-endoxifen by measuring the drug levels in the blood and how long the body takes to remove it.

The Treatment Cohort has been simplified to a single study arm (Z)-endoxifen + goserelin. Up to 20 participants will be enrolled that have a baseline Ki-67 10% and 45 participants will be enrolled that have a baseline Ki-67\>10%.

A key goal of the study is to see if (Z)-endoxifen can slow down or stop tumor growth as measured by a reduction in Ki-67 levels. Tumor tissue samples will be taken by breast biopsy after about 4 weeks of treatment to check levels of this biomarker. If the tumor shows signs of response, participants can continue treatment for up to 24 weeks or until they have surgery.

Study participation is up to 6 months (24 weeks of treatment) followed by surgery and a one-month follow up visit.
Breast
II
Abramson, Vandana
NCT05607004
VICCBRE22108

A Study Using Nivolumab, in Combination With Chemotherapy Drugs to Treat Nasopharyngeal Carcinoma (NPC)

This phase II trial tests effects of nivolumab in combination with chemotherapy drugs prior to radiation therapy patients with nasopharyngeal carcinoma (NPC). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as gemcitabine and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Researchers want to find out what effects, good and/or bad, adding nivolumab to chemotherapy has on patients with newly diagnosed NPC. In addition, they want to find out if children with NPC may be treated with less radiation therapy and whether this decreases the side effects of therapy.
Not Available
II
Not Available
NCT06064097
VICC-NTPED24105

A Single Arm Phase II Study of ADjuvant Endocrine Therapy, Pertuzumab, and Trastuzumab for Patients With Anatomic Stage I Hormone Receptor-positive, HER2-positive Breast Cancer

Breast

This research study is studying a combination of HER2-directed therapies (trastuzumab and pertuzumab) and hormonal therapy as a treatment after surgery for hormone receptor positive breast cancer.

The study drugs involved in this study are:

* A combination of trastuzumab and pertuzumab given as an injection under the skin (PHESGO)
* Hormonal (endocrine) Treatment
Breast
II
Abramson, Vandana
NCT04569747
VICCBRE2243