Comparing Sentinel Lymph Node (SLN) Biopsy With Standard Neck Dissection for Patients With Early-Stage Oral Cavity Cancer
Head/Neck
Head/Neck
This phase II/III trial studies how well sentinel lymph node biopsy works and compares sentinel lymph node biopsy surgery to standard neck dissection as part of the treatment for early-stage oral cavity cancer. Sentinel lymph node biopsy surgery is a procedure that removes a smaller number of lymph nodes from your neck because it uses an imaging agent to see which lymph nodes are most likely to have cancer. Standard neck dissection, such as elective neck dissection, removes many of the lymph nodes in your neck. Using sentinel lymph node biopsy surgery may work better in treating patients with early-stage oral cavity cancer compared to standard elective neck dissection.
Head/Neck
II/III
Topf, Michael
NCT04333537
NRGHN006
Disposable Perfusion Phantom for Accurate DCE (Dynamic Contrast Enhanced)-MRI Measurement of Pancreatic Cancer Therapy Response
Pancreatic
Pancreatic
The goal of this study is to investigate whether the therapeutic response of pancreatic tumors can be accurately assessed using quantitative DCE-MRI, when the inter/intra-scanner variability is reduced using the Point-of-care Portable Perfusion Phantom, P4. The intra-scanner variability over time leads to errors in therapy monitoring, while the inter-scanner variability impedes the comparison of data among institutes. The P4 is small enough to be imaged concurrently in the bore of a standard MRI scanner with a patient for real-time quality assurance. The P4 is safe, inexpensive and easily operable, thus it has great potential for widespread and routine clinical use for accurate diagnosis, prognosis and therapy monitoring.
This study has identified two arms, one arm is healthy individuals that will undergo DCE MRI at three different MRI locations to establish baseline results. The healthy volunteers will undergo these MRIs prior to the second arm, which contains patients with pancreatic cancer. The pancreatic cancer patients will only have DCE MRI done at one location.
This study has identified two arms, one arm is healthy individuals that will undergo DCE MRI at three different MRI locations to establish baseline results. The healthy volunteers will undergo these MRIs prior to the second arm, which contains patients with pancreatic cancer. The pancreatic cancer patients will only have DCE MRI done at one location.
Pancreatic
N/A
Xu, Junzhong
NCT04588025
VICCGI2099
A Multi-Institution Study of TGF Imprinted, Ex Vivo Expanded Universal Donor NK Cell Infusions as Adoptive Immunotherapy in Combination With Gemcitabine and Docetaxel in Patients With Relapsed or Refractory Pediatric Bone and Soft Tissue
Multiple Cancer Types
The purpose of this study is to determine if the addition of infusions of a type of immune cell called a "natural killer", or NK cell to the sarcoma chemotherapy regimen GEM/DOX (gemcitabine and docetaxel) can improve outcomes in people with childhood sarcomas that have relapsed or not responded to prior therapies.
The goals of this study are:
* To determine the safety and efficacy of the addition of adoptive transfer of universal donor, TGF imprinted (TGFi), expanded NK cells to the pediatric sarcoma salvage chemotherapeutic regimen gemcitabine/docetaxel (GEM/DOX) for treatment of relapsed and refractory pediatric sarcomas To determine the 6-month progression free survival achieved with this treatment in patients within cohorts of relapsed or refractory osteosarcoma, Ewing sarcoma, rhabdomyosarcoma and non-rhabdomyosarcoma soft tissue sarcoma.
* To identify toxicities related to treatment with GEM/DOX + TGFi expanded NK cells
Participants will receive study drugs that include chemotherapy and NK cells in cycles; each cycle is 21 days long and you can receive up to 8 cycles.
* Gemcitabine (GEM): via IV on Days 1 and 8
* Docetaxel (DOX): via IV on Day 8
* Prophylactic dexamethasone: Day 7-9 to prevent fluid retention and hypersensitivity reaction
* Peg-filgrastim (PEG-GCSF) or biosimilar: Day 9 to help your white blood cell recover and allow more chemotherapy to be given
* TGFi NK cells: via IV on Day 12
The goals of this study are:
* To determine the safety and efficacy of the addition of adoptive transfer of universal donor, TGF imprinted (TGFi), expanded NK cells to the pediatric sarcoma salvage chemotherapeutic regimen gemcitabine/docetaxel (GEM/DOX) for treatment of relapsed and refractory pediatric sarcomas To determine the 6-month progression free survival achieved with this treatment in patients within cohorts of relapsed or refractory osteosarcoma, Ewing sarcoma, rhabdomyosarcoma and non-rhabdomyosarcoma soft tissue sarcoma.
* To identify toxicities related to treatment with GEM/DOX + TGFi expanded NK cells
Participants will receive study drugs that include chemotherapy and NK cells in cycles; each cycle is 21 days long and you can receive up to 8 cycles.
* Gemcitabine (GEM): via IV on Days 1 and 8
* Docetaxel (DOX): via IV on Day 8
* Prophylactic dexamethasone: Day 7-9 to prevent fluid retention and hypersensitivity reaction
* Peg-filgrastim (PEG-GCSF) or biosimilar: Day 9 to help your white blood cell recover and allow more chemotherapy to be given
* TGFi NK cells: via IV on Day 12
Pediatrics,
Sarcoma
I/II
Borinstein, Scott
NCT05634369
VICCPED24617
Evaluating 111In Panitumumab for Nodal Staging in Head and Neck Cancer
Multiple Cancer Types
This phase I trial tests the safety and effectiveness of indium In 111 panitumumab (111In-panitumumab) for identifying the first lymph nodes to which cancer has spread from the primary tumor (sentinel lymph nodes) in patients with head and neck squamous cell carcinoma (HNSCC) undergoing surgery. The most important factor for survival for many cancer types is the presence of cancer that has spread to the lymph nodes (metastasis). Lymph node metastases in patients with head and neck cancer reduce the 5-year survival by half. Sometimes, the disease is too small to be found on clinical and imaging exams before surgery. 111In-panitumumab is in a class of medications called radioimmunoconjugates. It is composed of a radioactive substance (indium In 111) linked to a monoclonal antibody (panitumumab). Panitumumab binds to EGFR receptors, a receptor that is over-expressed on the surface of many tumor cells and plays a role in tumor cell growth. Once 111In-panitumumab binds to tumor cells, it is able to be seen using an imaging technique called single photon emission computed tomography/computed tomography (SPECT/CT). SPECT/CT can be used to make detailed pictures of the inside of the body and to visualize areas where the radioactive drug has been taken up by the cells. Using 111In-panitumumab with SPECT/CT imaging may improve identification of sentinel lymph nodes in patients with head and neck squamous cell cancer undergoing surgery.
Head/Neck,
Phase I
I
Rosenthal, Eben
NCT05901545
VICC-EDHAN23201P
Testing the Combination of Two Approved Drugs and One Experimental Drug in Patients With Relapsed or Refractory Multiple Myeloma
This phase I/II trial tests the safety, side effects, best dose, and effectiveness of iberdomide in combination with belantamab mafodotin and dexamethasone in treating patients with multiple myeloma (MM) that has come back after a period of improvement (relapsed) or that does not respond to treatment (refractory). Multiple myeloma is a cancer that affects white blood cells called plasma cells, which are made in the bone marrow and are part of the immune system. Multiple myeloma cells have a protein on their surface called B-cell maturation antigen (BCMA) that allows the cancer cells to survive and grow. Immunotherapy with iberdomide, may induce changes in body's immune system and may interfere with the ability of cancer cells to grow and spread. Belantamab mafodotin has been designed to attach to the BCMA protein, which may cause the myeloma cell to become damaged and die. Dexamethasone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. Iberdomide plus belantamab mafodotin may help slow or stop the growth of cancer in patients with multiple myeloma.
Not Available
I/II
Baljevic, Muhamed
NCT06232044
ALLPCLA062101
Targeted Therapy Directed by Genetic Testing in Treating Patients With Locally Advanced or Advanced Solid Tumors, The ComboMATCH Screening Trial
Multiple Cancer Types
This ComboMATCH patient screening trial is the gateway to a coordinated set of clinical trials to study cancer treatment directed by genetic testing. Patients with solid tumors that have spread to nearby tissue or lymph nodes (locally advanced) or have spread to other places in the body (advanced) and have progressed on at least one line of standard systemic therapy or have no standard treatment that has been shown to prolong overall survival may be candidates for these trials. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with some genetic changes or abnormalities (mutations) may benefit from treatment that targets that particular genetic mutation. ComboMATCH is designed to match patients to a treatment that may work to control their tumor and may help doctors plan better treatment for patients with locally advanced or advanced solid tumors.
Breast,
Gastrointestinal,
Gynecologic,
Head/Neck,
Lung,
Melanoma,
Neuro-Oncology,
Sarcoma,
Urologic
II
Choe, Jennifer
NCT05564377
VICC-NTMDT23238
Testing the Addition of Total Ablative Therapy to Usual Systemic Therapy Treatment for Limited Metastatic Colorectal Cancer, The ERASur Study
This phase III trial compares total ablative therapy and usual systemic therapy to usual systemic therapy alone in treating patients with colorectal cancer that has spread to up to 4 body sites (limited metastatic). The usual approach for patients who are not participating in a study is treatment with intravenous (IV) (through a vein) and/or oral medications (systemic therapy) to help stop the cancer sites from getting larger and the spread of the cancer to additional body sites. Ablative means that the intention of the local treatment is to eliminate the cancer at that metastatic site. The ablative local therapy will consist of very focused, intensive radiotherapy called stereotactic ablative radiotherapy (SABR) with or without surgical resection and/or microwave ablation, which is a procedure where a needle is temporarily inserted in the tumor and heat is used to destroy the cancer cells. SABR, surgical resection, and microwave ablation have been tested for safety, but it is not scientifically proven that the addition of these treatments are beneficial for your stage of cancer. The addition of ablative local therapy to all known metastatic sites to the usual approach of systemic therapy could shrink or remove the tumor(s) or prevent the tumor(s) from returning.
Not Available
III
Not Available
NCT05673148
VICC-NTGIT23268
Inotuzumab Ozogamicin in Treating Younger Patients With B-Lymphoblastic Lymphoma or Relapsed or Refractory CD22 Positive B Acute Lymphoblastic Leukemia
This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
Not Available
II
Not Available
NCT02981628
COGAALL1621
Gravity Versus Vacuum Based Indwelling Tunneled Pleural Drainage System
Lung
Lung
Malignant pleural effusion remains a debilitating complication of end stage cancer, which can be greatly improved by the introduction of the indwelling tunneled pleural catheter (IPC). However, there is no standard of care regarding drainage and limited data on the utility of different drainage techniques. In addition, many patients develop discomfort and chest pain during drainage. The investigators propose to evaluate gravity drainage and suction drainage on quality of life measures and outcomes.
Lung
N/A
Maldonado, Fabien
NCT03831386
VICCTHO19118
A Study With Tovorafenib (DAY101) as a Treatment Option for Progressive, Relapsed, or Refractory Langerhans Cell Histiocytosis
This phase II trial tests the safety, side effects, best dose and activity of tovorafenib (DAY101) in treating patients with Langerhans cell histiocytosis that is growing, spreading, or getting worse (progressive), has come back (relapsed) after previous treatment, or does not respond to therapy (refractory). Langerhans cell histiocytosis is a type of disease that occurs when the body makes too many immature Langerhans cells (a type of white blood cell). When these cells build up, they can form tumors in certain tissues and organs including bones, skin, lungs and pituitary gland and can damage them. This tumor is more common in children and young adults. DAY101 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Using DAY101 may be effective in treating patients with relapsed or refractory Langerhans cell histiocytosis.
Not Available
II
Not Available
NCT05828069
VICC-NTPED24012