Safety and Tolerability of Ziftomenib Combinations in Patients With Relapsed/Refractory Acute Myeloid Leukemia
The safety, tolerability, and antileukemic response of ziftomenib in combination with
standard of care treatments for patients with relapsed/refractory acute myeloid leukemia will
be examined with the following agents: FLAG-IDA, low-dose cytarabine, and gilteritinib.
standard of care treatments for patients with relapsed/refractory acute myeloid leukemia will
be examined with the following agents: FLAG-IDA, low-dose cytarabine, and gilteritinib.
Not Available
I
Fedorov, Kateryna
NCT06001788
VICC-DTHEM23484P
Surgical Debulking Prior to Peptide Receptor Radionuclide Therapy in Patients with Well Differentiated Gastroenteropancreatic Neuroendocrine Tumors
Multiple Cancer Types
This phase IV trial evaluates how well giving standard of care (SOC) peptide receptor radionuclide therapy (PRRT) after SOC surgical removal of as much tumor as possible (debulking surgery) works in treating patients with grade 1 or 2, somatostatin receptor (SSTR) positive, gastroenteropancreatic neuroendocrine tumors (GEP-NETs) that have spread from where they first started (primary site) to the liver (hepatic metastasis). Lutetium Lu 177 dotatate is a radioactive drug that uses targeted radiation to kill tumor cells. Lutetium Lu 177 dotatate includes a radioactive form (an isotope) of the element called lutetium. This radioactive isotope (Lu-177) is attached to a molecule called dotatate. On the surface of GEP-NET tumor cells, a receptor called a somatostatin receptor binds to dotatate. When this binding occurs, the lutetium Lu 177 dotatate drug then enters somatostatin receptor-positive tumor cells, and radiation emitted by Lu-177 helps kill the cells. Giving lutetium Lu 177 dotatate after surgical debulking may better treat patients with grade 1/2 GEP-NETs.
Colon,
Esophageal,
Gastric/Gastroesophageal,
Gastrointestinal,
Liver,
Pancreatic,
Rectal
N/A
Idrees, Kamran
NCT06016855
VICCGI2283
Sacituzumab Govitecan and Atezolizumab for the Prevention of Triple Negative Breast Cancer Recurrence
Breast
Breast
This phase II trial investigates how well sacituzumab govitecan and atezolizumab work in preventing triple negative breast cancer from coming back (recurrence). Atezolizumab is a protein that affects the immune system by blocking the PD-L1 pathway. The PD-L1 pathway controls the bodys natural immune response, but for some types of cancer the immune system does not work as it should and is prevented from attacking tumors. Atezolizumab works by blocking the PD-L1 pathway, which may help the immune system identify and catch tumor cells. Sacituzumab govitecan is a monoclonal antibody, called sacituzumab, linked to a chemotherapy drug, called SN-38. Sacituzumab is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as TROP2 receptors, and delivers SN-38 to kill them. Giving sacituzumab govitecan and atezolizumab may work as a treatment for residual cancer in the breast or lymph nodes.
Breast
II
Abramson, Vandana
NCT04434040
VICCBRE2056
Testing the Addition of a New Anti-cancer Drug, M3814 (Peposertib), to Radiation Therapy for Localized Pancreatic Cancer
Pancreatic
Pancreatic
This phase I/II trial studies the side effects and best dose of M3814 and to see how well it works when given together with radiation therapy in treating patients with pancreatic cancer that cannot be removed by surgery and has not spread to other parts of the body (localized). M3814 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving M3814 and hypofractionated radiation therapy together may work better than radiation therapy alone in the treatment of patients with localized pancreatic cancer.
Pancreatic
I/II
Cardin, Dana
NCT04172532
NCIGIP10366
An Imaging Agent (Panitumumab-IRDye800) for the Detection of Head and Neck Cancer During Surgery
Head/Neck
Head/Neck
This phase II trial studies the effect of panitumumab-IRDye800 in detecting head and neck cancer during surgery in patients head and neck cancer. Doctors who perform surgery for head and neck cancer are well-trained in removing all of the cancer that can be seen during the operation; however, there are times when there is cancer that is so small that it cannot be seen by the surgeon. Panitumumab-IRDye800 is a combination of panitumumab and IRDye800CW. Panitumumab works by attaching to the cancer cell in a unique way that allows the drug to get into the cancer tissue. IRDye800CW is an investigational dye that, when tested in the laboratory, helps various characteristics of human tissue show up better when using a special camera. Panitumumab-IRDye800 is a combination of the drug and the dye that attaches to cancer cells and appears to make them visible to the doctor when he or she uses the special camera during the surgery. Giving panitumumab-IRDye800 may help doctors better identify cancer in the operating room.
Head/Neck
II
Rosenthal, Eben
NCT04511078
VICCHN21109