Skip to main content

Displaying 51 - 60 of 127

Testing What Happens When an Immunotherapy Drug (Pembrolizumab) is Given by Itself Compared to the Usual Treatment of Chemotherapy With Radiation After Surgery for Recurrent Head and Neck Squamous Cell Carcinoma

Head/Neck

This phase II trial studies the effect of pembrolizumab alone compared to the usual approach (chemotherapy \[cisplatin and carboplatin\] plus radiation therapy) after surgery in treating patients with head and neck squamous cell carcinoma that has come back (recurrent) or patients with a second head and neck cancer that is not from metastasis (primary). Radiation therapy uses high energy radiation or protons to kill tumor cells and shrink tumors. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of cancer cells. Carboplatin is also in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of cancer cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab alone after surgery may work better than the usual approach in shrinking recurrent or primary head and neck squamous cell carcinoma.
Head/Neck
II
Choe, Jennifer
NCT04671667
ECOGHNEA3191

Outpatient Administration of Teclistamab or Talquetamab for Multiple Myeloma

Multiple Myeloma

This is a phase II study to evaluate the outpatient administration of Teclistamab or Talquetamab in Multiple Myeloma patients
Multiple Myeloma
II
Baljevic, Muhamed
NCT05972135
VICCPCL24566

A Study of PHST001 in Advanced Solid Tumors

Miscellaneous

PHST001-101 is a multicenter, open-label, Phase 1 study of PHST001 in patients with advanced solid tumors. The study design includes a Dose Escalation Phase and a Dose Expansion Phase, and will enroll patients with advanced relapsed and/or refractory solid tumors. The study's primary object is to evaluate the safety and tolerability of PHST001 and determine the RP2D (Recommended Phase 2 dose) of PHST001.
Miscellaneous
I
Davis, Elizabeth
NCT06840886
VICCPHI24591

Study of Safety and Tolerability of BCA101 Monotherapy and in Combination Therapy in Patients With EGFR-driven Advanced Solid Tumors

Phase I

The investigational drug to be studied in this protocol, BCA101, is a first-in-class compound that targets both EGFR with TGF. Based on preclinical data, this bifunctional antibody may exert synergistic activity in patients with EGFR-driven tumors.
Phase I
I
Choe, Jennifer
NCT04429542
VICCPHI2254

Testing the Use of AMG 510 (Sotorasib) and Panitumumab as a Targeted Treatment for KRAS G12C Mutant Solid Tumor Cancers (A ComboMATCH Treatment Trial)

This phase II ComboMATCH treatment trial tests how well AMG 510 (sotorasib) with or without panitumumab works in treating patients with KRAS G12C mutant solid tumors that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Sotorasib is in a class of medications called KRAS inhibitors. It works by blocking the action of the abnormal protein that signals cancer cells to multiply. This helps stop or slow the spread of cancer cells. Panitumumab is in a class of medications called monoclonal antibodies. It works by slowing or stopping the growth of cancer cells. Giving combination panitumumab and sotorasib may kill more tumor cells in patients with advanced solid tumors with KRAS G12C mutation.
Not Available
II
Choe, Jennifer
NCT05638295
ECOGMDEAY191-E5

Personalized Antibody-Drug Conjugate Therapy Based on RNA and Protein Testing for the Treatment of Advanced or Metastatic Solid Tumors (The ADC MATCH Screening and Treatment Trial)

Multiple Cancer Types

This phase II ADC MATCH screening and multi-sub-study treatment trial is evaluating whether biomarker-directed treatment with one of three antibody-drug conjugates (ADCs) (sacituzumab govitecan, enfortumab vedotin, and trastuzumab deruxtecan) works in treating patients with solid tumor cancers that have high expression of the Trop-2, nectin-4, or HER2 proteins and that may have spread from where they first started (primary site) to nearby tissue, lymph nodes, or distant parts of the body (advanced) or to other places in the body (metastatic). Precision medicine is a form of medicine that uses information about a person's genes, proteins, and environment to prevent, diagnose, or treat disease in a way that is tailored to the patient. ADCs such as sacituzumab govitecan, enfortumab vedotin, and trastuzumab deruxtecan are monoclonal antibodies attached to biologically active drugs and are a form of targeted therapy. Sacituzumab govitecan is a monoclonal antibody, called sacituzumab, linked to a drug called govitecan. Sacituzumab attaches to a protein called Trop-2 on the surface of tumor cells and delivers govitecan to kill them. Enfortumab vedotin is a monoclonal antibody, enfortumab, linked to an anticancer drug called vedotin. It works by helping the immune system to slow or stop the growth of tumor cells. Enfortumab attaches to a protein called nectin-4 on tumor cells in a targeted way and delivers vedotin to kill them. Trastuzumab deruxtecan is composed of a monoclonal antibody, called trastuzumab, linked to a chemotherapy drug, called deruxtecan. Trastuzumab attaches to HER2 positive tumor cells in a targeted way and delivers deruxtecan to kill them. Personalized treatment with sacituzumab govitecan, enfortumab vedotin, or trastuzumab deruxtecan may be an effective treatment option for patients with advanced or metastatic solid tumors that screen positive for high expression of Trop-2, nectin-4, or HER2, respectively.
Adrenocortical, Bladder, Breast, Cervical, Colon, Dermatologic, Esophageal, GIST, Gastric/Gastroesophageal, Gastrointestinal, Gynecologic, Head/Neck, Kidney (Renal Cell), Liver, Lung, Melanoma, Miscellaneous, Ovarian, Pancreatic, Prostate, Rectal, Sarcoma, Thyroid, Urologic, Uterine
II
Keedy, Vicki
NCT06311214
ETCMD10397

A First-in-human Study of PRTH-101 Monotherapy +/- Pembrolizumab in Subjects With Advanced Malignancies

The goal of this Open-Label Study is to evaluate the safety and tolerability of PRTH-101 alone or in combination with pembrolizumab in adults with advance or metastatic solid tumors.
Not Available
I
Berlin, Jordan
NCT05753722
VICC-DTPHI23182

A Study to Evaluate the Safety and Efficacy of Mesothelin-Targeting Logic-gated CAR T, in Participants With Solid Tumors That Express MSLN and Have Lost HLA-A*02 Expression

Miscellaneous

The goal of this study is to test autologous logic-gated Tmod CAR T-cell products in subjects with solid tumors including colorectal cancer (CRC), pancreatic cancer (PANC), non-small cell lung cancer (NSCLC), ovarian cancer (OVCA), mesothelioma (MESO), and other solid tumors that express mesothelin (MSLN) and have lost HLA-A\*02 expression.

The main questions this study aims to answer are:

Phase 1: What is the recommended dose that is safe for patients

Phase 2: Does the recommended dose kill solid tumor cells and protect the patient's healthy cells

Participants will be required to perform study procedures and assessments, and will also receive the following study treatments:

Enrollment and Apheresis in BASECAMP-1 (NCT04981119)

Preconditioning Lymphodepletion (PCLD) Regimen

Tmod CAR T cells at the assigned dose
Miscellaneous
I/II
Eng, Cathy
NCT06051695
VICCPHI24512

Lenalidomide, and Dexamethasone With or Without Daratumumab in Treating Patients With High-Risk Smoldering Myeloma

Multiple Myeloma

This phase III trial studies how well lenalidomide and dexamethasone works with or without daratumumab in treating patients with high-risk smoldering myeloma. Drugs used in chemotherapy, such as lenalidomide and dexamethasone, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as daratumumab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread. Giving lenalidomide and dexamethasone with daratumumab may work better in treating patients with smoldering myeloma.
Multiple Myeloma
III
Baljevic, Muhamed
NCT03937635
ECOGPCLEAA173

A Randomized Study of ASTX727 With or Without Iadademstat in Advanced Myeloproliferative Neoplasms (MPNs)

Leukemia

This phase II trial compares the effect of ASTX727 in combination with iadademstat to ASTX727 alone in treating patients with accelerated or blast phase Philadelphia chromosome negative myeloproliferative neoplasms (MPNs). ASTX727 is a combination of two drugs, cedazuridine and decitabine. Cedazuridine is in a class of medications called cytidine deaminase inhibitors. It prevents the breakdown of decitabine, making it more available in the body so that decitabine will have a greater effect. Decitabine is in a class of medications called hypomethylation agents. It works by helping the bone marrow produce normal blood cells and by killing abnormal cells in the bone marrow. Iadademstat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving ASTX727 in combination with iadademstat may be more effective than ASTX727 alone in treating patients with accelerated or blast phase Philadelphia chromosome negative MPNs.
Leukemia
II
Kishtagari, Ashwin
NCT06661915
ETCHEM10675