Skip to main content

Displaying 71 - 80 of 120

Neuroblastoma Maintenance Therapy Trial

Multiple Cancer Types

Difluoromethylornithine (DFMO) will be used in an open label, single agent, multicenter, study for patients with neuroblastoma in remission. In this study subjects will receive 730 Days of oral difluoromethylornithine (DFMO) at a dose of 750 mg/m2 250 mg/m2 BID (strata 1, 2, 3, and 4) OR 2500 mg/m2 BID (stratum 1B) on each day of study. This study will focus on the use of DFMO in high risk neuroblastoma patients that are in remission as a strategy to prevent recurrence.
Endocrine, Neuroblastoma (Pediatrics), Neuroendocrine, Pediatrics
II
Pastakia, Devang
NCT02679144
VICCPED16157

Testing the Combination of New Anti-cancer Drug Peposertib With Avelumab and Radiation Therapy for Advanced/Metastatic Solid Tumors and Hepatobiliary Malignancies

This phase I/II trial studies the best dose and side effects of peposertib and to see how well it works with avelumab and hypofractionated radiation therapy in treating patients with solid tumors and hepatobiliary malignancies that have spread to other places in the body (advanced/metastatic). Peposertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as avelumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving peposertib in combination with avelumab and hypofractionated radiation therapy may work better than other standard chemotherapy, hormonal, targeted, or immunotherapy medicines available in treating patients with solid tumors and hepatobiliary malignancies.
Not Available
I/II
Heumann, Thatcher
NCT04068194
VICC-NTGIT24020

Evaluating the Addition of the Immunotherapy Drug Atezolizumab to Standard Chemotherapy Treatment for Advanced or Metastatic Neuroendocrine Carcinomas That Originate Outside the Lung

Neuroendocrine

This phase II/III trial compares the effect of immunotherapy with atezolizumab in combination with standard chemotherapy with a platinum drug (cisplatin or carboplatin) and etoposide versus standard therapy alone for the treatment of poorly differentiated extrapulmonary (originated outside the lung) neuroendocrine cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) or that has spread from where it first started (primary site) to other places in the body (metastatic). The other aim of this trial is to compare using atezolizumab just at the beginning of treatment versus continuing it beyond the initial treatment. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cisplatin and carboplatin are in a class of medications known as platinum-containing compounds that work by killing, stopping or slowing the growth of cancer cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair, and it may kill cancer cells. Giving atezolizumab in combination with a platinum drug (cisplatin or carboplatin) and etoposide may work better in treating patients with poorly differentiated extrapulmonary neuroendocrine cancer compared to standard therapy with a platinum drug (cisplatin or carboplatin) and etoposide alone.
Neuroendocrine
II/III
Ramirez, Robert
NCT05058651
SWOGGIS2012

Testing the Use of Neratinib or the Combination of Neratinib and Palbociclib Targeted Treatment for HER2+ Solid Tumors (A ComboMATCH Treatment Trial)

This phase II ComboMATCH treatment trial compares the effect of neratinib to the combination of neratinib and palbociclib in treating patients with HER2 positive solid tumors. Neratinib and palbociclib are in a class of medications called kinase inhibitors. They work by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of tumor cells. Giving neratinib and palbociclib in combination may shrink or stabilize cancers that over-express a specific biomarker called HER2.
Not Available
II
Choe, Jennifer
NCT06126276
ECOGMDEAY191-N5

A Global Study of Volrustomig (MEDI5752) for Participants With Unresected Locally Advanced Head and Neck Squamous Cell Carcinoma Following Definitive Concurrent Chemoradiotherapy

The main purpose of this study is to assess the efficacy and safety of volrustomig compared to observation in participants with unresected locally advanced head and neck squamous cell carcinoma (LA-HNSCC) who have not progressed after receiving definitive concurrent chemoradiotherapy (cCRT).
Not Available
III
Choe, Jennifer
NCT06129864
VICC-DTHAN24071

Testing the Combination of the Anti-Cancer Drugs Temozolomide and M1774 to Evaluate Their Safety and Effectiveness

Multiple Cancer Types

This phase I/II trial studies the side effects and best dose of temozolomide and M1774 and how well they works in treating patients with cancer that has spread from where it first started (primary site) to other places in the body (metastatic) and may have spread to nearby tissue, lymph nodes, or distant parts of the body (advanced). Temozolomide is in a class of medications called alkylating agents. It works by damaging the cell's deoxyribonucleic acid (DNA) and may kill tumor cells and slow down or stop tumor growth. M1774 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Adding M1774 to temozolomide may shrink or stabilize cancer for longer than temozolomide alone.
Miscellaneous, Phase I
I/II
Davis, Elizabeth
NCT05691491
VICCPHI10572

Study Assessing Activity of Intravenous (IV) Etentamig Monotherapy Versus Standard Available Therapies in Adult Participants With Relapsed or Refractory Multiple Myeloma

Multiple myeloma (MM) is a cancer of the blood's plasma cells. The cancer is typically found in the bones and bone marrow (the spongy tissue inside of the bones) and can cause bone pain, fractures, infections, weaker bones, and kidney failure. Treatments are available, but MM can come back (relapsed) or may not get better (refractory) with treatment. This is a study to determine change in disease symptoms of etentamig compared to standard available therapies in adult participants with relapsed/refractory (R/R) MM.

Etentamig is an investigational drug being developed for the treatment of R/R MM. This study is broken into 2 Arms; Arm A and Arm B. In Arm A, participants will receive etentamig as a monotherapy. In Arm B, participants will receive the standard available therapy (SAT) identified by the Investigator during screening, in accordance with the local (or applicable) approved label, package insert, summary of product characteristics, and/or the institutional guidelines, as applicable. Around 380 adult participants with relapsed/refractory multiple myeloma will be enrolled at approximately 140 sites across the world.

In Arm A participants will receive etentamig as an infusion into the vein in 28 day cycles, during the 3.5 year study duration. In Arm B, participants will receive the SAT identified by the Investigator during screening, in accordance with the local (or applicable) approved label, package insert, summary of product characteristics, and/or the institutional guidelines, as applicable, during the 3.5 year study duration.

There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at a hospital or clinic. The effect of the treatment will be checked by medical assessments, blood tests, checking for side effects and questionnaires.
Not Available
III
Baljevic, Muhamed
NCT06158841
VICC-DTPCL23493

Study of Navtemadlin add-on to Ruxolitinib in JAK Inhibitor-Nave Patients With Myelofibrosis Who Have a Suboptimal Response to Ruxolitinib

Hematologic

This clinical trial is evaluating whether addition of navtemadlin to ruxolitinib treatment will provide more clinical benefit than ruxolitinib alone for patients with Myelofibrosis who have a suboptimal response to ruxolitinib treatment alone.

Subjects will start by receiving ruxolitinib alone in the run-in period. Those who demostrate a suboptimal response from ruxolitinib alone will then be randomized 2:1 to receive navtemadlin or navtemadlin placebo as add-on treatment to their ongoing ruxolitinib. Randomized means that subjects will be assigned to a group by chance, like a flip of a coin. The study is blinded, meaning the subjects, doctors, central endpoint assessors and sponsor will not know which add on treatment (navtemadlin or navtemadlin placebo) the subject is receiving.
Hematologic
III
Mohan, Sanjay
NCT06479135
VICC-DTHEM24136

Open-label of Loncastuximab Tesirine (ADCT-402) in Relapsed/Refractory Marginal Zone Lymphoma

Lymphoma

The purpose of this research study is to see if loncastuximab tesirine has any benefits at dose levels researchers found acceptable in earlier studies in patients with related forms of immune cell cancers. The researchers want to find out the effects (good and bad) that loncastuximab tesirine has on the participant and the participant's condition.
Lymphoma
II
Oluwole, Olalekan
NCT05296070
VICC-ITCTT23024

Clinical Trial of YH32367 in Patients With HER2 Positive Locally Advanced or Metastatic Solid Tumor

Miscellaneous

This first-in-human study will be counducted to evaluate the safety, tolerability, pharmacokinetics (PK) and anti-tumor activity of YH32367 in Patients with HER2-Positive Locally Advanced or Metastatic Solid Tumors.
Miscellaneous
I/II
Heumann, Thatcher
NCT05523947
VICC-DTMDT24023