Skip to main content

Displaying 71 - 80 of 126

P-BCMA-ALLO1 Allogeneic CAR-T Cells in the Treatment of Subjects With Multiple Myeloma

Multiple Cancer Types

Phase 1 study comprised of open-label, dose escalation, multiple cohorts of P-BCMA-ALLO1 allogeneic T stem cell memory (Tscm) CAR-T cells in subjects with relapsed / refractory Multiple Myeloma (RRMM).
Multiple Myeloma, Phase I
I
Dholaria, Bhagirathbhai
NCT04960579
VICCCTTP2232

ResQ201A: Clinical Trial Of N-803 Plus TISLELIZUMAB And DOCETAXEL Versus DOCETAXEL Monotherapy In Participants With Advanced Or Metastatic Non-Small Cell Lung Cancer

Lung

This is a randomized, open-label, phase 3 clinical trial to compare the efficacy and safety of N-803 plus tislelizumab and docetaxel (experimental arm) versus docetaxel monotherapy (control arm). Enrolled participants will be randomized 2:1 to treatment in the experimental arm or the control arm. Participant randomization will be stratified by geographical region (North America vs Europe vs ASIA vs Other), NSCLC histology (squamous vs nonsquamous), and actionable genomic alteration (AGA); (epidermal growth factor receptor \[EGFR\]/anaplastic lymphoma kinase \[ALK\] vs OTHER AGA vs No AGA).
Lung
III
Wang, Shuai
NCT06745908
VICCTHO24569

Avelumab or Hydroxychloroquine with or Without Palbociclib to Eliminate Dormant Breast Cancer

Breast

This clinical trial will assess the safety and early efficacy of Hydroxychloroquine or Avelumab, with or without Palbociclib, in early-stage ER+ breast cancer patients who are found to harbor disseminated tumor cells (DTCs) in the bone marrow after definitive surgery and standard adjuvant therapy.
Breast
II
Reid, Sonya
NCT04841148
VICCBRE2161

A Study to Compare Standard Therapy to Treat Hodgkin Lymphoma to the Use of Two Drugs, Brentuximab Vedotin and Nivolumab

Multiple Cancer Types

This phase III trial compares the effect of adding immunotherapy (brentuximab vedotin and nivolumab) to standard treatment (chemotherapy with or without radiation) to the standard treatment alone in improving survival in patients with stage I and II classical Hodgkin lymphoma. Brentuximab vedotin is in a class of medications called antibody-drug conjugates. It is made of a monoclonal antibody called brentuximab that is linked to a cytotoxic agent called vedotin. Brentuximab attaches to CD30 positive lymphoma cells in a targeted way and delivers vedotin to kill them. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs such as doxorubicin hydrochloride, bleomycin sulfate, vinblastine sulfate, dacarbazine, and procarbazine hydrochloride work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Cyclophosphamide is in a class of medications called alkylating agents. It works by damaging the cell's deoxyribonucleic acid (DNA) and may kill cancer cells. It may also lower the body's immune response. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill cancer cells. Vincristine is in a class of medications called vinca alkaloids. It works by stopping cancer cells from growing and dividing and may kill them. Prednisone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Adding immunotherapy to the standard treatment of chemotherapy with or without radiation may increase survival and/or fewer short-term or long-term side effects in patients with classical Hodgkin lymphoma compared to the standard treatment alone.
Pediatric Lymphoma, Pediatrics
III
Smith, Christine
NCT05675410
VICC-NTPED23306

SMP-3124LP in Adults With Advanced Solid Tumors

Multiple Cancer Types

An Open-label, Phase I Dose Escalation and Phase 2 Dose Expansion Study to Assess Safety, Tolerability, Preliminary Antitumor Activity of SMP 3124LP in Adults with Advanced Solid Tumors
Breast, Head/Neck, Lung, Non Small Cell, Ovarian, Phase I, Uterine
I/II
Eng, Cathy
NCT06526819
VICC-DTPHI23348

Testing the Role of DNA Released From Tumor Cells Into the Blood in Guiding the Use of Immunotherapy After Surgical Removal of the Bladder, Kidney, Ureter, and Urethra for Urothelial Cancer Treatment, MODERN Study

This phase II/III trial examines whether patients who have undergone surgical removal of bladder, kidney, ureter or urethra, but require an additional treatment called immunotherapy to help prevent their urinary tract (urothelial) cancer from coming back, can be identified by a blood test. Many types of tumors tend to lose cells or release different types of cellular products including their DNA which is referred to as circulating tumor DNA (ctDNA) into the bloodstream before changes can be seen on scans. Health care providers can measure the level of ctDNA in blood or other bodily fluids to determine which patients are at higher risk for disease progression or relapse. In this study, a blood test is used to measure ctDNA and see if there is still cancer somewhere in the body after surgery and if giving a treatment will help eliminate the cancer. Immunotherapy with monoclonal antibodies, such as nivolumab and relatlimab, can help the body's immune system to attack the cancer, and can interfere with the ability of tumor cells to grow and spread. This trial may help doctors determine if ctDNA measurement in blood can better identify patients that need additional treatment, if treatment with nivolumab prolongs patients' life and whether the additional immunotherapy treatment with relatlimab extends time without disease progression or prolongs life of urothelial cancer patients who have undergone surgical removal of their bladder, kidney, ureter or urethra.
Not Available
II/III
Schaffer, Kerry
NCT05987241
ALLUROA032103

Testing Nivolumab and Ipilimumab Immunotherapy With or Without the Targeted Drug Cabozantinib in Recurrent, Metastatic, or Incurable Nasopharyngeal Cancer

Head/Neck

This phase II trial tests how well nivolumab and ipilimumab immunotherapy with or without cabozantinib works in treating patients with nasopharyngeal cancer that has come back (after a period of improvement) (recurrent), has spread from where it first started (primary site) to other places in the body (metastatic), or for which no treatment is currently available (incurable). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cabozantinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of cancer cells. Giving immunotherapy with nivolumab and ipilimumab and targeted therapy with cabozantinib may help shrink and stabilize nasopharyngeal cancer.
Head/Neck
II
Choe, Jennifer
NCT05904080
ALLHNA092105

Study of Sotorasib, Panitumumab and FOLFIRI Versus FOLFIRI With or Without Bevacizumab-awwb in Treatment-nave Participants With Metastatic Colorectal Cancer With KRAS p.G12C Mutation

The aim of this study is to compare progression free survival (PFS) in treatment-nave participants with KRAS p.G12C mutated metastatic colorectal cancer (mCRC) receiving sotorasib, panitumumab and FOLFIRI vs FOLFIRI with or without bevacizumab-awwb.
Not Available
III
Eng, Cathy
NCT06252649
VICC-DTGIT23266

MAGIC Ruxolitinib for aGVHD

Multiple Cancer Types

This clinical trial will study ruxolitinib-based treatment of acute graft-versus-host-disease (GVHD) that developed following allogeneic hematopoietic cell transplant. Acute GVHD occurs when donor cells attack the healthy tissue of the body. The most common symptoms are skin rash, jaundice, nausea, vomiting, and/or diarrhea. The standard treatment for GVHD is high dose steroids such as prednisone or methylprednisolone, which suppresses the donor cells, but sometimes there can be either no response or the response does not last. In these cases, the GVHD can become dangerous or even life threatening. High dose steroid treatment can also cause serious complications. Researchers have developed a system, called the Minnesota risk system, to help predict how well the GVHD will respond to steroids based on the symptoms present at the time of diagnosis. The Minnesota risk system classifies patients with newly diagnosed acute GVHD into two groups with highly different responses to standard steroid treatment and long-term outcomes. This protocol maximizes efficiency because all patients with grade II-IV GVHD are eligible for screening and treatment is assigned according to patient risk. Patients with lower risk GVHD, Minnesota standard risk, have high response rates to steroid treatment. In this trial the researchers will test whether ruxolitinib alone is as effective (non-inferior) as steroid-free therapy and safe. Patients will be randomized to two different doses of ruxolitinib to identify the dose which maximizes efficacy while minimizing toxicities such as hematologic and infectious toxicities. Patients with higher risk GVHD, Minnesota high risk, have unacceptable outcomes with systemic corticosteroid treatment alone and the researchers will test whether adding ruxolitinib, a proven effective second line GVHD treatment, can improve outcomes when added to systemic corticosteroids as first line treatment.
Leukemia, Lymphoma, Multiple Myeloma, Myelodysplastic Syndrome
II
Kitko, Carrie
NCT06936566
VICCCTT25042

A Study of CBX-250 in Participants With Acute Myeloid Leukemia, High-Risk Myelodysplastic Syndrome or Chronic Myelomonocytic Leukemia

Multiple Cancer Types

Study CBX-250-001 is a Phase 1, open-label, dose-escalation study of CBX-250 in participants with relapsed/refractory AML, HR-MDS and CMML. Participants aged 12 years are planned to be enrolled. CBX-250 will initially be investigated on a fixed step-up dosing schedule. CBX-250 will be administered subcutaneously in 28-day cycles, with the first study drug dose administered on Cycle 1, Day 1. Cycle 1 will consist of a priming phase over 7 days, and a target phase over 28 days. Participants will continue CBX-250 until progressive disease (PD) or unacceptable toxicity. All subsequent treatment cycles will be 28 days.
Leukemia, Myelodysplastic Syndrome
I
Ball, Somedeb
NCT06994676
VICCHEMP25017