Skip to main content

Displaying 91 - 100 of 127

Phase 1 Study of MRTX1719 in Solid Tumors With MTAP Deletion

This is a Phase 1, open-label, multicenter, study of the safety, tolerability, PK, PD, and anti-tumor activity of MRTX1719 patients with advanced, unresectable or metastatic solid tumor malignancy with homozygous deletion of the MTAP gene.
Not Available
I/II
Davis, Elizabeth
NCT05245500
VICC-DTPHI23101P

Pembrolizumab vs. Observation in People With Triple-negative Breast Cancer Who Had a Pathologic Complete Response After Chemotherapy Plus Pembrolizumab

Breast

The phase III trial compares the effect of pembrolizumab to observation for the treatment of patients with early-stage triple-negative breast cancer who achieved a pathologic complete response after preoperative chemotherapy in combination with pembrolizumab. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial may help researchers determine if observation will result in the same risk of cancer coming back as pembrolizumab after surgery in triple-negative breast cancer patients who achieve pathologic complete response after preoperative chemotherapy with pembrolizumab.
Breast
III
Abramson, Vandana
NCT05812807
VICC-NTBRE23357

Study of Navtemadlin add-on to Ruxolitinib in JAK Inhibitor-Nave Patients With Myelofibrosis Who Have a Suboptimal Response to Ruxolitinib

Hematologic

This clinical trial is evaluating whether addition of navtemadlin to ruxolitinib treatment will provide more clinical benefit than ruxolitinib alone for patients with Myelofibrosis who have a suboptimal response to ruxolitinib treatment alone.

Subjects will start by receiving ruxolitinib alone in the run-in period. Those who demostrate a suboptimal response from ruxolitinib alone will then be randomized 2:1 to receive navtemadlin or navtemadlin placebo as add-on treatment to their ongoing ruxolitinib. Randomized means that subjects will be assigned to a group by chance, like a flip of a coin. The study is blinded, meaning the subjects, doctors, central endpoint assessors and sponsor will not know which add on treatment (navtemadlin or navtemadlin placebo) the subject is receiving.
Hematologic
III
Mohan, Sanjay
NCT06479135
VICC-DTHEM24136

Study of Sotorasib, Panitumumab and FOLFIRI Versus FOLFIRI With or Without Bevacizumab-awwb in Treatment-nave Participants With Metastatic Colorectal Cancer With KRAS p.G12C Mutation

The aim of this study is to compare progression free survival (PFS) in treatment-nave participants with KRAS p.G12C mutated metastatic colorectal cancer (mCRC) receiving sotorasib, panitumumab and FOLFIRI vs FOLFIRI with or without bevacizumab-awwb.
Not Available
III
Eng, Cathy
NCT06252649
VICC-DTGIT23266

A Study of Ziftomenib, an Oral Menin Inhibitor, in Combination With Imatinib in Patients With Advanced Gastrointestinal Stromal Tumors (GIST)

Multiple Cancer Types

In this clinical trial, the safety, tolerability, and preliminary antitumor activity of ziftomenib in combination with imatinib will be evaluated in adults with gastrointestinal stromal tumors (GIST) who have been treated previously with imatinib.
Phase I, Sarcoma
I
Keedy, Vicki
NCT06655246
VICCSAR24535

A Single Arm Phase II Study of ADjuvant Endocrine Therapy, Pertuzumab, and Trastuzumab for Patients With Anatomic Stage I Hormone Receptor-positive, HER2-positive Breast Cancer

Breast

This research study is studying a combination of HER2-directed therapies (trastuzumab and pertuzumab) and hormonal therapy as a treatment after surgery for hormone receptor positive breast cancer.

The study drugs involved in this study are:

* A combination of trastuzumab and pertuzumab given as an injection under the skin (PHESGO)
* Hormonal (endocrine) Treatment
Breast
II
Abramson, Vandana
NCT04569747
VICCBRE2243

Genetic Testing to Select Therapy for the Treatment of Advanced or Metastatic Kidney Cancer, OPTIC RCC Study

Kidney (Renal Cell)

This phase II trial tests whether using genetic testing of tumor tissue to select the optimal treatment regimen works in treating patients with clear cell renal cell (kidney) cancer that has spread to other places in the body (advanced or metastatic). The current Food and Drug Administration (FDA)-approved regimens for advanced kidney cancer fall into two categories. One treatment combination includes two immunotherapy drugs (nivolumab plus ipilimumab), which are delivered by separate intravenous infusions into a vein. The other combination is one immunotherapy drug (nivolumab infusion) plus an oral pill taken by mouth (cabozantinib). Nivolumab and ipilimumab are "immunotherapies" which release the brakes of the immune system, thus allowing the patient's own immune system to better kill cancer cells. Cabozantinib is a "targeted therapy" specifically designed to block certain biological mechanisms needed for growth of cancer cells. In kidney cancer, cabozantinib blocks a tumor's blood supply. The genetic (DNA) makeup of the tumor may affect how well it responds to therapy. Testing the makeup (genes) of the tumor, may help match a treatment (from one of the above two treatment options) to the specific cancer and increase the chance that the disease will respond to treatment. The purpose of this study is to learn if genetic testing of tumor tissue may help doctors select the optimal treatment regimen to which advanced kidney cancer is more likely to respond.
Kidney (Renal Cell)
II
Rini, Brian
NCT05361720
VICCURO21103

N-803 and PD-L1 t-haNK Combined With Bevacizumab for Recurrent or Progressive Glioblastoma

This study consists of 2 portions. The phase 2 portion is an open-label, single-arm study to evaluate the safety and efficacy of NAI, PD-L1 t-haNK, and bevacizumab combination therapy in participants with recurrent or progressive GBM. The phase 2B portion is an open-label, randomized study to evaluate the efficacy and safety for the following 2 experimental arms in participants with recurrent or progressive GBM: NAI, bevacizumab, and TTFields combination therapy (Arm A) or NAI, PD-L1 t-haNK, bevacizumab, and TTFields combination therapy (Arm B).

Phase 2 Treatment for all enrolled participants will consist of repeated cycles of 28 days for a maximum treatment period of 76 weeks (19 cycles) as follows: Every 2 weeks (Days 1 and 15 of a 28-day cycle)

Fourteen (14) participants were enrolled in the phase 2 portion of this study as of the date of this v02 protocol. No additional participants will be administered therapy in phase 2.

Phase 2B Participants will be randomized 1:1 to 1 of 2 experimental arms (Arm A or Arm B). Treatment for all enrolled participants will consist of repeated 8-week cycles for a maximum treatment period of up to 80 weeks (10 cycles). Experimental Arm (A): Every 2 weeks (Days 1, 15, 29, and 43 of an 8-week cycle)

Up to twenty (20) participants will be randomized in phase 2B (up to 10 participants/arm.

Duration of Treatment:

Participants will receive study treatment for up to 76 weeks during phase 2 (up to 19 repeated 28-day cycles) and for up to 80 weeks (up to 10 repeated 8-week cycles) during phase 2B or until they report unacceptable toxicity (not corrected with dose reduction), withdraw consent, or if the Investigator feels it is no longer in the participant's best interest to continue treatment. Treatment may also be discontinued if the participant has confirmed PD per iRANO, unless the participant is clinically stable and is considered potentially deriving benefit per Investigator's assessment.

Duration of Follow-up:

Participants who discontinue study treatment should remain in the study for follow-up. Participants should be followed for collection of survival status, posttreatment therapies (phase 2 and phase 2B), and medical history (phase 2B only) every 12 weeks ( 2 weeks) for the first 2 years then yearly thereafter for an additional 3 years. The maximum duration of follow-up is 5 years (260 weeks).
Not Available
II
Merrell, Ryan
NCT06061809
VICC-DTNEU24006

Testing the Use of Combination Therapy in Adult Patients With Newly Diagnosed Multiple Myeloma, the EQUATE Trial

Multiple Myeloma

This phase III trial compares the combination of four drugs (daratumumab, bortezomib, lenalidomide and dexamethasone) to the use of a three drug combination (daratumumab, lenalidomide and dexamethasone). Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Daratumumab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Anti-inflammatory drugs, such as dexamethasone lower the body's immune response and are used with other drugs in the treatment of some types of cancer. Adding bortezomib to daratumumab, lenalidomide, and dexamethasone may be more effective in shrinking the cancer or preventing it from returning, compared to continuing on daratumumab, lenalidomide, and dexamethasone.
Multiple Myeloma
III
Baljevic, Muhamed
NCT04566328
ECOGPCLEAA181

Study of SGR-3515 In Participants With Advanced Solid Tumors.

The purpose of this study is to learn about the effects of a new study drug, called SGR-3515 that may be a treatment for advanced solid tumors.
Not Available
I
Gibson, Mike
NCT06463340
VICC-DTPHI24100