Clinical Trials Search at Vanderbilt-Ingram Cancer Center
A Global Study of Volrustomig (MEDI5752) for Participants With Unresected Locally Advanced Head and Neck Squamous Cell Carcinoma Following Definitive Concurrent Chemoradiotherapy
The main purpose of this study is to assess the efficacy and safety of volrustomig compared to observation in participants with unresected locally advanced head and neck squamous cell carcinoma (LA-HNSCC) who have not progressed after receiving definitive concurrent chemoradiotherapy (cCRT).
Not Available
III
Choe, Jennifer
NCT06129864
VICC-DTHAN24071
Testing the Combination of Two Approved Drugs and One Experimental Drug in Patients With Relapsed or Refractory Multiple Myeloma
This phase I/II trial tests the safety, side effects, best dose, and effectiveness of iberdomide in combination with belantamab mafodotin and dexamethasone in treating patients with multiple myeloma (MM) that has come back after a period of improvement (relapsed) or that does not respond to treatment (refractory). Multiple myeloma is a cancer that affects white blood cells called plasma cells, which are made in the bone marrow and are part of the immune system. Multiple myeloma cells have a protein on their surface called B-cell maturation antigen (BCMA) that allows the cancer cells to survive and grow. Immunotherapy with iberdomide, may induce changes in body's immune system and may interfere with the ability of cancer cells to grow and spread. Belantamab mafodotin has been designed to attach to the BCMA protein, which may cause the myeloma cell to become damaged and die. Dexamethasone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. Iberdomide plus belantamab mafodotin may help slow or stop the growth of cancer in patients with multiple myeloma.
Not Available
I/II
Baljevic, Muhamed
NCT06232044
ALLPCLA062101
pBI-11 & TA-HPV (With Pembrolizumab as Treatment for Patients w/Advanced, PD-L1 CPS1, hrHPV+ Oropharyngeal Cancer
This phase II trial tests how well pB1-11 and human papillomavirus tumor antigen (TA-HPV) vaccines in combination with pembrolizumab work in treating patients with oropharyngeal cancer that has come back (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic) and that is PD-L1 and human papillomavirus (HPV) positive. Oropharyngeal cancer is a type of head and neck cancer involving structures in the back of the throat (the oropharynx), such as the non-bony back roof of the mouth (soft palate), sides and back wall of the throat, tonsils, and back third of the tongue. Scientists have found that some strains or types of a virus called HPV can cause oropharyngeal cancer. pBI-11 is a circular deoxyribonucleic acid (DNA) (plasmid) vaccine that promotes antibody, cytotoxic T cell, and protective immune responses. TA-HPV is an investigational recombinant vaccina virus derived from a strain of the vaccina virus which was widely used for smallpox vaccination. Vaccination with this TA-HPV vaccine may stimulate the immune system to mount a cytotoxic T cell response against tumor cells positive for HPV, resulting in decreased tumor growth. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread by inhibiting the PD-1 receptor. These investigational vaccines could cause or enhance an immune response in the body against HPV, during which time the activity of pembrolizumab against oropharyngeal cancer associated with HPV may be strengthened. These drugs in combination may be more effective in increasing the ability of the immune system to fight oropharyngeal cancer than pembrolizumab alone.
Not Available
II
Not Available
NCT05799144
VICCHN2208
Safety and Efficacy of ALLO-501A Anti-CD19 Allogeneic CAR T Cells in Adults with Relapsed/Refractory Large B Cell Lymphoma, Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma (ALPHA2)
This is a single-arm, open label, multicenter Phase 1/2 study evaluating ALLO-501A in adult subjects with R/R LBCL and CLL/SLL. The purpose of the ALPHA2 study is to assess the safety, efficacy, and cell kinetics of ALLO-501A in adults with relapsed or refractory large B-cell lymphoma and assess the safety of ALLO-501A in adults with relapsed or refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) after a lymphodepletion regimen comprising fludarabine, cyclophosphamide, and ALLO-647.
Not Available
II
Jallouk, Andrew
NCT04416984
VICC-DTCTT24008
A Study of [177Lu]Lu-DOTA-TATE in Newly Diagnosed ES-SCLC Patients in Combination With Carboplatin, Etoposide and Atezolizumab
This study aims to establish a safe and well tolerated dose of \[177Lu\]Lu-DOTA-TATE in combination with carboplatin, etoposide and atezolizumab in this setting and to assess preliminary efficacy of this combination treatment versus the combination of carboplatin, etoposide, and atezolizumab.The study will be essential to assess a new potential therapeutic option in participants with this aggressive cancer type.
Not Available
I/II
Ramirez, Robert
NCT05142696
VICC-DTTHO24168P
Comparing the Combination of Selinexor-Daratumumab-Velcade-Dexamethasone (Dara-SVD) With the Usual Treatment (Dara-RVD) for High-Risk Newly Diagnosed Multiple Myeloma
This phase II trial compares the combination of selinexor, daratumumab and hyaluronidase-fihj (daratumumab), velcade (bortezomib), and dexamethasone (Dara-SVD) to the usual treatment of daratumumab, lenalidomide, bortezomib, and dexamethasone (Dara-RVD) in treating patients with high-risk newly diagnosed multiple myeloma. Selinexor is in a class of medications called selective inhibitors of nuclear export (SINE). It works by blocking a protein called CRM1, which may keep cancer cells from growing and may kill them. Daratumumab is in a class of medications called monoclonal antibodies. It binds to a protein called CD38, which is found on some types of immune cells and cancer cells, including myeloma cells. Daratumumab may block CD38 and help the immune system kill cancer cells. Bortezomib blocks several molecular pathways in a cell and may cause cancer cells to die. It is a type of proteasome inhibitor and a type of dipeptidyl boronic acid. Dexamethasone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. Lenalidomide is in a class of medications called immunomodulatory agents. It works by helping the bone marrow to produce normal blood cells and by killing abnormal cells in the bone marrow. The drugs daratumumab, lenalidomide, bortezomib, dexamethasone and selinexor are already approved by the Food and Drug Administration for use in myeloma. But selinexor is not used until myeloma comes back (relapses) after initial treatment. Giving selinexor in the initial treatment may be a superior type of treatment for patients with high-risk newly diagnosed multiple myeloma.
Not Available
II
Baljevic, Muhamed
NCT06169215
VICC-NTPCL23525
Docetaxel to Androgen Receptor Pathway Inhibitors in Patients With Metastatic Castration Sensitive Prostate Cancer and Suboptimal PSA Response
Prostate
Prostate
This study is being done to answer the following question: can the chance of prostate cancer growing or spreading be lowered by adding a drug to the usual combination of drugs?
This study would like to find out if this approach is better or worse than the usual approach for prostate cancer.
The usual approach for patients who are not in a study is hormone treatment with Androgen Deprivation Therapy (ADT) and Androgen-Receptor Pathway Inhibitor (ARPI).
This study would like to find out if this approach is better or worse than the usual approach for prostate cancer.
The usual approach for patients who are not in a study is hormone treatment with Androgen Deprivation Therapy (ADT) and Androgen-Receptor Pathway Inhibitor (ARPI).
Prostate
III
Schaffer, Kerry
NCT06592924
ALLUROCCTGPR26
Expanded Access Study for the Treatment of Patients With Commercially Out-of-Specification Axicabtagene Ciloleucel
Lymphoma
Lymphoma
The goal of this study is to provide access to axicabtagene ciloleucel for patients diagnosed with a disease approved for treatment with axicabtagene ciloleucel, that is otherwise out of specification for commercial release.
Lymphoma
N/A
Jallouk, Andrew
NCT05776160
VICC-XDCTT23452
Long-term Follow-up Study for Participants of Kite-Sponsored Interventional Studies Treated With Gene-Modified Cells
Multiple Cancer Types
The goal of this clinical study is to learn more about the long-term safety, effectiveness and prolonged action of Kite study drugs, axicabtagene ciloleucel, brexucabtagene autoleucel, KITE-363, KITE-753, KITE-197, and anitocabtagene autoleucel in participants of Kite-sponsored interventional studies.
Hematologic,
Leukemia,
Lymphoma,
Pediatric Leukemia,
Pediatric Lymphoma
N/A
Kassim, Adetola
NCT05041309
VICCCTT2170
Expanded Access Program of AMTAGVI That is Out of Specification for Commercial Release
Melanoma
Melanoma
The objective of this expanded access protocol is to provide access to Out Of Specification (OOS) AMTAGVI treatment to patients.
Melanoma
N/A
Johnson, Douglas
NCT05398640
VICCMEL24579