Clinical Trials Search at Vanderbilt-Ingram Cancer Center
Study of Navtemadlin add-on to Ruxolitinib in JAK Inhibitor-Nave Patients With Myelofibrosis Who Have a Suboptimal Response to Ruxolitinib
Hematologic
Hematologic
This clinical trial is evaluating whether addition of navtemadlin to ruxolitinib treatment will provide more clinical benefit than ruxolitinib alone for patients with Myelofibrosis who have a suboptimal response to ruxolitinib treatment alone.
Subjects will start by receiving ruxolitinib alone in the run-in period. Those who demostrate a suboptimal response from ruxolitinib alone will then be randomized 2:1 to receive navtemadlin or navtemadlin placebo as add-on treatment to their ongoing ruxolitinib. Randomized means that subjects will be assigned to a group by chance, like a flip of a coin. The study is blinded, meaning the subjects, doctors, central endpoint assessors and sponsor will not know which add on treatment (navtemadlin or navtemadlin placebo) the subject is receiving.
Subjects will start by receiving ruxolitinib alone in the run-in period. Those who demostrate a suboptimal response from ruxolitinib alone will then be randomized 2:1 to receive navtemadlin or navtemadlin placebo as add-on treatment to their ongoing ruxolitinib. Randomized means that subjects will be assigned to a group by chance, like a flip of a coin. The study is blinded, meaning the subjects, doctors, central endpoint assessors and sponsor will not know which add on treatment (navtemadlin or navtemadlin placebo) the subject is receiving.
Hematologic
III
Mohan, Sanjay
NCT06479135
VICC-DTHEM24136
A Study to Compare Standard Chemotherapy to Therapy With CPX-351 and/or Gilteritinib for Patients With Newly Diagnosed AML With or Without FLT3 Mutations
This phase III trial compares standard chemotherapy to therapy with liposome-encapsulated daunorubicin-cytarabine (CPX-351) and/or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and/or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and/or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3/ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and/or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.
Not Available
III
Not Available
NCT04293562
COGAAML1831
Testing Lutetium Lu 177 Dotatate in Patients With Somatostatin Receptor Positive Advanced Bronchial Neuroendocrine Tumors
Lung
Lung
This phase II trial studies the effect of lutetium Lu 177 dotatate compared to the usual treatment (everolimus) in treating patients with somatostatin receptor positive bronchial neuroendocrine tumors that have spread to other places in the body (advanced). Lutetium Lu 177-dotate is a radioactive drug. It binds to a protein called somatostatin receptor, which is found on some neuroendocrine tumor cells. Lutetium Lu 177-dotatate builds up in these cells and gives off radiation that may kill them. It is a type of radioconjugate and a type of somatostatin analog. Lutetium Lu 177 dotatate may be more effective than everolimus in shrinking or stabilizing advanced bronchial neuroendocrine tumors.
Lung
II
Ramirez, Robert
NCT04665739
SWOGTHOA021901
A Study Comparing Anitocabtagene Autoleucel to Standard of Care Therapy in Participants With Relapsed/ Refractory Multiple Myeloma
The goal of this study (iMMagine-3) is to compare the study drug, anitocabtagene autoleucel to standard of care therapy (SOCT) in participants with relapsed/refractory multiple myeloma who have received 1 to 3 prior lines of therapy, including an anti-CD38 monoclonal antibody and an immunomodulatory drug.
The primary objective of this study is to compare the efficacy of anitocabtagene autoleucel versus SOCT in participants with RRMM.
The primary objective of this study is to compare the efficacy of anitocabtagene autoleucel versus SOCT in participants with RRMM.
Not Available
III
Biltibo, Eden
NCT06413498
VICC-DTCTT23578
Outpatient Administration of Teclistamab or Talquetamab for Multiple Myeloma
Multiple Myeloma
Multiple Myeloma
This is a phase II study to evaluate the outpatient administration of Teclistamab or Talquetamab in Multiple Myeloma patients
Multiple Myeloma
II
Baljevic, Muhamed
NCT05972135
VICCPCL24566
Testing the Addition of 131I-MIBG or Lorlatinib to Intensive Therapy in People With High-Risk Neuroblastoma (NBL)
This phase III trial studies iobenguane I-131 or lorlatinib and standard therapy in treating younger patients with newly-diagnosed high-risk neuroblastoma or ganglioneuroblastoma. Radioactive drugs, such as iobenguane I-131, may carry radiation directly to tumor cells and not harm normal cells. Lorlatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving iobenguane I-131 or lorlatinib and standard therapy may work better compared to lorlatinib and standard therapy alone in treating younger patients with neuroblastoma or ganglioneuroblastoma.
Not Available
III
Not Available
NCT03126916
COGANBL1531
Dinutuximab With Chemotherapy, Surgery and Stem Cell Transplantation for the Treatment of Children With Newly Diagnosed High Risk Neuroblastoma
This phase III trial tests how well the addition of dinutuximab to Induction chemotherapy along with standard of care surgical resection of the primary tumor, radiation, stem cell transplantation, and immunotherapy works for treating children with newly diagnosed high-risk neuroblastoma. Dinutuximab is a monoclonal antibody that binds to a molecule called GD2, which is found on the surface of neuroblastoma cells, but is not present on many healthy or normal cells in the body. When dinutuximab binds to the neuroblastoma cells, it helps signal the immune system to kill the tumor cells. This helps the cells of the immune system kill the cancer cells, this is a type of immunotherapy. When chemotherapy and immunotherapy are given together, during the same treatment cycle, it is called chemoimmunotherapy. This clinical trial randomly assigns patients to receive either standard chemotherapy and surgery or chemoimmunotherapy (chemotherapy plus dinutuximab) and surgery during Induction therapy. Chemotherapy drugs administered during Induction include, cyclophosphamide, topotecan, cisplatin, etoposide, vincristine, and doxorubicin. These drugs work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing or by stopping them from spreading. Upon completion of 5 cycles of Induction therapy, a disease evaluation is completed to determine how well the treatment worked. If the tumor responds to therapy, patients receive a tandem transplantation with stem cell rescue. If the tumor has little improvement or worsens, patients receive chemoimmunotherapy on Extended Induction. During Extended Induction, dinutuximab is given with irinotecan, temozolomide. Patients with a good response to therapy move on to Consolidation therapy, when very high doses of chemotherapy are given at two separate points to kill any remaining cancer cells. Following, transplant, radiation therapy is given to the site where the cancer originated (primary site) and to any other areas that are still active at the end of Induction. The final stage of therapy is Post-Consolidation. During Post-Consolidation, dinutuximab is given with isotretinoin, with the goal of maintaining the response achieved with the previous therapy. Adding dinutuximab to Induction chemotherapy along with standard of care surgical resection of the primary tumor, radiation, stem cell transplantation, and immunotherapy may be better at treating children with newly diagnosed high-risk neuroblastoma.
Not Available
III
Benedetti, Daniel
NCT06172296
VICC-NTPED24104
Expanded Access Study for the Treatment of Patients With Commercially Out-of-Specification Brexucabtagene Autoleucel
Multiple Cancer Types
The goal of this study is to provide access to brexucabtagene autoleucel for patients diagnosed with a disease approved for treatment with brexucabtagene autoleucel, that is otherwise out of specification for commercial release.
Leukemia,
Lymphoma
N/A
Jallouk, Andrew
NCT05776134
VICC-XDCTT23451
Surgery With or Without Neoadjuvant Chemotherapy in High Risk RetroPeritoneal Sarcoma
Sarcoma
Sarcoma
This is a multicenter, randomized, open label phase lll trial to assess whether preoperative chemotherapy, as an adjunct to curative-intent surgery, improves the prognosis of high risk DDLPS (dedifferentiated Liposarcoma) and LMS (Leiomyosarcoma) patients as measured by disease free survival.
After confirmation of eligibility criteria, patients will be randomized to either the standard arm or experimental arm.
After confirmation of eligibility criteria, patients will be randomized to either the standard arm or experimental arm.
Sarcoma
III
Davis, Elizabeth
NCT04031677
ECOGSAREA7211
Hypofractionated Radiotherapy Followed by Surgical Resection in the Treatment of Soft Tissue Sarcomas
Sarcoma
Sarcoma
The trial will use neoadjuvant hypofractionated radiotherapy followed by surgical resection in the treatment for soft tissue sarcoma. It will allow patients to be treated over a shorter course (5 or 15 days of radiation) compared to the traditional 5 week regimen. It is proposed that this will be possible without increasing the risk of wound complication or local recurrence compared with a traditional 5 week course of pre-operative radiation.
Sarcoma
II
Shinohara, Eric
NCT04506008
VICCSAR2062