Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



A Study of ASP3082 in Adults With Advanced Solid Tumors

Phase I

This is an open-label study. This means that people in this study and clinic staff will know that they will receive ASP3082. The study aims to check how safe and well-tolerated ASP3082 is for people with advanced solid tumors that have a specific mutation called KRAS G12D.

This study will be in 2 parts.

In Part 1, different small groups of people will receive lower to higher doses of ASP3082 by itself, or together with cetuximab. Any medical problems will be recorded at each dose. This is done to find suitable doses of ASP3082, by itself or together with cetuximab, to use in Part 2 of the study. The first group will receive the lowest dose of ASP3082. A medical expert panel will check the results from this group and decide if the next group can receive a higher dose of ASP3082. The panel will do this for each group until all groups have received ASP3082 (by itself or together with cetuximab) or until suitable doses have been selected for Part 2.

In Part 2, ASP3082 will be given in by itself, or in combination with the other study treatments.

Study treatments will be given through a vein. This is called an infusion. Each treatment cycle is 21 or 28 days long. They will continue treatment until: they have medical problems from the treatment they can't tolerate; their cancer gets worse; they start other cancer treatment; or they ask to stop treatment.
Phase I
I
Berlin, Jordan
NCT05382559
VICCPHI2207

Evaluating the Addition of the Immunotherapy Drug Atezolizumab to Standard Chemotherapy Treatment for Advanced or Metastatic Neuroendocrine Carcinomas That Originate Outside the Lung

Neuroendocrine

This phase II/III trial compares the effect of immunotherapy with atezolizumab in combination with standard chemotherapy with a platinum drug (cisplatin or carboplatin) and etoposide versus standard therapy alone for the treatment of poorly differentiated extrapulmonary (originated outside the lung) neuroendocrine cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) or that has spread from where it first started (primary site) to other places in the body (metastatic). The other aim of this trial is to compare using atezolizumab just at the beginning of treatment versus continuing it beyond the initial treatment. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cisplatin and carboplatin are in a class of medications known as platinum-containing compounds that work by killing, stopping or slowing the growth of cancer cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair, and it may kill cancer cells. Giving atezolizumab in combination with a platinum drug (cisplatin or carboplatin) and etoposide may work better in treating patients with poorly differentiated extrapulmonary neuroendocrine cancer compared to standard therapy with a platinum drug (cisplatin or carboplatin) and etoposide alone.
Neuroendocrine
II/III
Ramirez, Robert
NCT05058651
SWOGGIS2012

Anti-Lag-3 (Relatlimab) and Anti-PD-1 Blockade (Nivolumab) Versus Standard of Care (Lomustine) for the Treatment of Patients With Recurrent Glioblastoma

Neuro-Oncology

This phase II trial compares the safety, side effects and effectiveness of anti-lag-3 (relatlimab) and anti-PD-1 blockade (nivolumab) to standard of care lomustine for the treatment of patients with glioblastoma that has come back after a period of improvement (recurrent). Relatlimab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the tumor, and may interfere with the ability of tumor cells to grow and spread. Lomustine is a chemotherapy drug and in a class of medications called alkylating agents. It damages the cell's deoxyribonucleic acid and may kill tumor cells. Giving relatlimab and nivolumab may be safe, tolerable, and/or effective compared to standard of care lomustine in treating patients with recurrent glioblastoma.
Neuro-Oncology
II
Mohler, Alexander
NCT06325683
ALLNEUA072201

Phase I/II Trial in ES-SCLC to Enhance Response to Atezolizumab Plus Chemotherapy With Total Body Irradiation

Multiple Cancer Types

This phase I/II trial studies the side effects, safety, and effectiveness of low dose radiation to the entire body (total body irradiation \[TBI\]) and higher dose radiation to known areas of cancer (hypofractionated radiation therapy \[H-RT\]) combined with atezolizumab and chemotherapy (carboplatin \& etoposide) in treating patients with small cell lung cancer that has spread to disease sites outside of the lung (extensive stage). Extensive stage disease has historically been treated with chemotherapy alone with consideration of chest (thoracic) radiation therapy for those with response to chemotherapy, as well as consideration of preventative radiation therapy to the head (prophylactic cranial irradiation). Emerging evidence supports the synergistic interactions between immunotherapy and radiation therapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill tumor cells. Combining TBI and H-RT with atezolizumab and chemotherapy may improve response to treatment.
Lung, Small Cell
I/II
Osmundson, Evan
NCT06110572
VICCTHOP2206

Study of Selinexor in Combination With Ruxolitinib in Myelofibrosis

Multiple Cancer Types

This is a global, multicenter, 2-part study to evaluate the efficacy and safety of selinexor plus ruxolitinib in JAK inhibitor (JAKi) treatment-nave myelofibrosis (MF) participants. The study will be conducted in two phases: Phase 1 (open-label) and Phase 3 (double-blind). Phase 1 (enrollment completed) was an open-label evaluation of the safety and recommended Phase 2 dose (RP2D) of selinexor in combination with ruxolitinib and included a dose escalation using a standard 3+3 design (Phase 1a) and a dose expansion part (Phase 1b). Phase 3 (ongoing), double-blind, placebo-controlled part of the study comparing the efficacy and safety of combination therapy of selinexor + ruxolitinib with combination of placebo + ruxolitinib.
Hematologic, Phase I
I/III
Mohan, Sanjay
NCT04562389
VICCHEMP2130

Eltanexor and Venetoclax in Relapsed or Refractory Myelodysplastic Syndrome and Acute Myeloid Leukemia

Multiple Cancer Types

This phase I trial tests the safety, side effects, and best dose of eltanexor in combination with venetoclax for the treatment of patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Eltanexor works by trapping "tumor suppressing proteins" within the cell, thus causing the cancer cells to die or stop growing. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving eltanexor together with venetoclax may be safe, tolerable and/or effective in treating patients with relapsed or refractory MDS or AML.
Leukemia, Myelodysplastic Syndrome, Phase I
I
Ball, Somedeb
NCT06399640
VICC-VCHEM23008P

A Study to Test Long-term Treatment With Brigimadlin in People With Solid Tumours Who Took Part in a Previous Study With This Medicine

Miscellaneous

This study is open to adults with solid tumours who received at least 4 cycles of treatment with brigimadlin in a previous study. The goal of this study is to find out how well people with solid tumours tolerate long-term treatment with brigimadlin. Brigimadlin is a so-called MDM2 inhibitor that was being developed to treat cancer.

All participants take brigimadlin as tablets once every 3 weeks at the study site. At study visits, doctors check participants' health and take note of any unwanted effects. At some study visits, doctors also check the size of the tumour and whether it has spread to other parts of the body. Participants are in the study as long as they benefit from treatment and can tolerate it.
Miscellaneous
II
Keedy, Vicki
NCT06619509
VICCSAR24625

Testing the Addition of an Immunotherapy Drug, Cemiplimab (REGN2810), Plus Surgery to the Usual Surgery Alone for Treating Advanced Skin Cancer

Head/Neck

This phase III trial compares the effect of adding cemiplimab to standard therapy (surgery with or without radiation) versus standard therapy alone in treating patients with stage III/IV squamous cell skin cancer that is able to be removed by surgery (resectable) and that may have come back after a period of improvement (recurrent). The usual treatment for patients with resectable squamous cell skin cancer is the removal of the cancerous tissue (surgery) with or without radiation, which uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Immunotherapy with monoclonal antibodies, such as cemiplimab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cemiplimab has been approved for the treatment of skin cancer that has spread or that cannot be removed by surgery, but it has not been approved for the treatment of skin cancer than can be removed by surgery. Adding cemiplimab to the usual treatment of surgery with or without radiation may be more effective in treating patients with stage III/IV resectable squamous cell skin cancer than the usual treatment alone.
Head/Neck
III
Choe, Jennifer
NCT06568172
NRGHNHN014

Expanded Access Study for the Treatment of Patients With Commercially Out-of-Specification Brexucabtagene Autoleucel

Multiple Cancer Types

The goal of this study is to provide access to brexucabtagene autoleucel for patients diagnosed with a disease approved for treatment with brexucabtagene autoleucel, that is otherwise out of specification for commercial release.
Leukemia, Lymphoma
N/A
Jallouk, Andrew
NCT05776134
VICC-XDCTT23451

Neoadjuvant Neratinib in Stage I-III HER2-Mutated Lobular Breast Cancers

This phase II trial tests how well neratinib prior to the primary treatment (neoadjuvant) works in treating patients with stage I-III HER2 mutated lobular breast cancers. Neratinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of cancer cells. Giving neratinib in addition to normal therapy may work better in treating cancer than the endocrine therapy patients would normally receive.
Not Available
II
Not Available
NCT05919108
VICC-NCBRE23172

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.