Clinical Trials Search at Vanderbilt-Ingram Cancer Center
Safety and Tolerability of Ziftomenib Combinations in Patients With Relapsed/Refractory Acute Myeloid Leukemia
The safety, tolerability, and antileukemic response of ziftomenib in combination with standard of care treatments for patients with relapsed/refractory acute myeloid leukemia will be examined with the following agents: FLAG-IDA, low-dose cytarabine, and gilteritinib.
Not Available
I
Fedorov, Kateryna
NCT06001788
VICC-DTHEM23484P
Eltanexor and Venetoclax in Relapsed or Refractory Myelodysplastic Syndrome and Acute Myeloid Leukemia
Multiple Cancer Types
This phase I trial tests the safety, side effects, and best dose of eltanexor in combination with venetoclax for the treatment of patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Eltanexor works by trapping "tumor suppressing proteins" within the cell, thus causing the cancer cells to die or stop growing. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving eltanexor together with venetoclax may be safe, tolerable and/or effective in treating patients with relapsed or refractory MDS or AML.
Leukemia,
Myelodysplastic Syndrome,
Phase I
I
Ball, Somedeb
NCT06399640
VICC-VCHEM23008P
Testing the Addition of Anti-Cancer Drug, ZEN003694 (ZEN-3694) and PD-1 Inhibitor (Pembrolizumab), to Standard Chemotherapy (Nab-Paclitaxel) Treatment in Patients With Advanced Triple-Negative Breast Cancer
Multiple Cancer Types
This phase Ib trial tests the safety and tolerability of ZEN003694 in combination with an immunotherapy drug called pembrolizumab and the usual chemotherapy approach with nab-paclitaxel for the treatment of patients with triple negative-negative breast cancer that has spread to other parts of the body (advanced). Paclitaxel is in a class of medications called antimicrotubule agents. It stops cancer cells from growing and dividing and may kill them. Nab-paclitaxel is an albumin-stabilized nanoparticle formulation of paclitaxel which may have fewer side effects and work better than other forms of paclitaxel. Immunotherapy with monoclonal antibodies, such as pembrolizumab may help the body's immune system attach the cancer and may interfere with the ability of tumor cells to grow and spread. ZEN003694 is an inhibitor of a family of proteins called the bromodomain and extra-terminal (BET). It may prevent the growth of tumor cells that over produce BET protein. Combination therapy with ZEN003694 pembrolizumab immunotherapy and nab-paclitaxel chemotherapy may help shrink or stabilize cancer for longer than chemotherapy alone.
Breast,
Phase I
I
Abramson, Vandana
NCT05422794
NCIBREP10525
Bevonescein for Intra-Operative Nerve Visualization in Head and Neck Surgery
Multiple Cancer Types
This protocol describes prospective, open-label, blinded, randomized controlled, multicenter pivotal studies to evaluate ALM-488.
Head/Neck,
Thyroid
III
Rohde, Sarah
NCT05377554
VICCHN2258
Testing the Use of Combination Therapy in Adult Patients With Newly Diagnosed Multiple Myeloma, the EQUATE Trial
Multiple Myeloma
Multiple Myeloma
This phase III trial compares the combination of four drugs (daratumumab, bortezomib, lenalidomide and dexamethasone) to the use of a three drug combination (daratumumab, lenalidomide and dexamethasone). Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Daratumumab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Anti-inflammatory drugs, such as dexamethasone lower the body's immune response and are used with other drugs in the treatment of some types of cancer. Adding bortezomib to daratumumab, lenalidomide, and dexamethasone may be more effective in shrinking the cancer or preventing it from returning, compared to continuing on daratumumab, lenalidomide, and dexamethasone.
Multiple Myeloma
III
Baljevic, Muhamed
NCT04566328
ECOGPCLEAA181
A Study of TAR-200 Versus Intravesical Chemotherapy in Participants With Recurrent High-Risk Non-Muscle-Invasive Bladder Cancer (HR-NMIBC) After Bacillus Calmette-Gurin (BCG)
Bladder
Bladder
The purpose of this study is to compare disease free survival (DFS) in participants with recurrence of papillary-only high-risk non-muscle-invasive bladder cancer (HR-NMIBC) within 1 year of last dose of Bacillus Calmette-Gurin (BCG) therapy and who refused or are unfit for Radical Cystectomy (RC), receiving TAR-200 versus investigator's choice of single agent intravesical chemotherapy.
Bladder
III
Luckenbaugh, Amy
NCT06211764
VICC-DDURO24103
A Study of Tucatinib With Trastuzumab and mFOLFOX6 Versus Standard of Care Treatment in First-line HER2+ Metastatic Colorectal Cancer
This study is being done to find out if tucatinib with other cancer drugs works better than standard of care to treat participants with HER2 positive colorectal cancer. This study will also determine what side effects happen when participants take this combination of drugs. A side effect is anything a drug does to the body besides treating your disease.
Participants in this study have colorectal cancer that has spread through the body (metastatic) and/or cannot be removed with surgery (unresectable).
Participants will be assigned randomly to the tucatinib group or standard of care group. The tucatinib group will get tucatinib, trastuzumab, and mFOLFOX6. The standard of care group will get either:
* mFOLFOX6 alone,
* mFOLFOX6 with bevacizumab, or
* mFOLFOX6 with cetuximab mFOLFOX6 is a combination of multiple drugs. All of the drugs given in this study are used to treat this type of cancer.
Participants in this study have colorectal cancer that has spread through the body (metastatic) and/or cannot be removed with surgery (unresectable).
Participants will be assigned randomly to the tucatinib group or standard of care group. The tucatinib group will get tucatinib, trastuzumab, and mFOLFOX6. The standard of care group will get either:
* mFOLFOX6 alone,
* mFOLFOX6 with bevacizumab, or
* mFOLFOX6 with cetuximab mFOLFOX6 is a combination of multiple drugs. All of the drugs given in this study are used to treat this type of cancer.
Not Available
III
Not Available
NCT05253651
VICC-DTGIT23052
Evaluating 111In Panitumumab for Nodal Staging in Head and Neck Cancer
Multiple Cancer Types
This phase I trial tests the safety and effectiveness of indium In 111 panitumumab (111In-panitumumab) for identifying the first lymph nodes to which cancer has spread from the primary tumor (sentinel lymph nodes) in patients with head and neck squamous cell carcinoma (HNSCC) undergoing surgery. The most important factor for survival for many cancer types is the presence of cancer that has spread to the lymph nodes (metastasis). Lymph node metastases in patients with head and neck cancer reduce the 5-year survival by half. Sometimes, the disease is too small to be found on clinical and imaging exams before surgery. 111In-panitumumab is in a class of medications called radioimmunoconjugates. It is composed of a radioactive substance (indium In 111) linked to a monoclonal antibody (panitumumab). Panitumumab binds to EGFR receptors, a receptor that is over-expressed on the surface of many tumor cells and plays a role in tumor cell growth. Once 111In-panitumumab binds to tumor cells, it is able to be seen using an imaging technique called single photon emission computed tomography/computed tomography (SPECT/CT). SPECT/CT can be used to make detailed pictures of the inside of the body and to visualize areas where the radioactive drug has been taken up by the cells. Using 111In-panitumumab with SPECT/CT imaging may improve identification of sentinel lymph nodes in patients with head and neck squamous cell cancer undergoing surgery.
Head/Neck,
Phase I
I
Rosenthal, Eben
NCT05901545
VICC-EDHAN23201P
Dose Optimization and Expansion Study of DFV890 in Adult Patients With Myeloid Diseases
Hematologic
Hematologic
Study CDFV890G12101 is an open-label, phase 1b, multicenter study with a randomized two-dose optimization part, and a dose expansion part consisting of three groups evaluating DFV890 in patients with myeloid diseases. The purpose of this study is to assess the safety, tolerability, pharmacokinetics, pharmacodynamics, efficacy and recommended dose for single agent DFV890 in patients with lower risk (LR: very low, low or intermediate risk) myelodysplastic syndromes (LR MDS), lower risk chronic myelomonocytic leukemia (LR CMML) and High-Risk Clonal Cytopenia of Undetermined Significance (HR CCUS).
Hematologic
I
Kishtagari, Ashwin
NCT05552469
VICC-DTHEM23007P
P-CD19CD20-ALLO1 Allogeneic CAR-T Cells in the Treatment of Subjects With B Cell Malignancies
Lymphoma
Lymphoma
Phase 1 study comprised of open-label, dose escalation and expansion cohort study of P-CD19CD20-ALLO1 allogeneic T stem cell memory (Tscm) CAR-T cells in subjects with relapsed/refractory B cell malignancies
Lymphoma
I
Dholaria, Bhagirathbhai
NCT06014762
VICC-DTCTT23163P