Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Clinical Trial of an Anti-cancer Drug, CA-4948 (Emavusertib), in Combination With Chemotherapy Treatment (FOLFOX Plus Bevacizumab) in Metastatic Colorectal Cancer

Multiple Cancer Types

This phase I trial studies the side effects and best dose of CA-4948 when given together with fluorouracil, leucovorin, oxaliplatin (FOLFOX) plus bevacizumab in treating patients with colorectal cancer that has spread from where it first started (primary site) to other places in the body (metastatic). CA-4948 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. The chemotherapy drugs used in FOLFOX, fluorouracil and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Leucovorin is used with fluorouracil to treat colorectal cancer. Bevacizumab is in a class of medications called anti-angiogenic agents. It works by stopping the formation of blood vessels that bring oxygen and nutrients to the tumor. This may slow the growth and spread of the tumor. Giving CA-4948 with FOLFOX plus bevacizumab may be safe, tolerable and/or effective in treating patients with metastatic colorectal cancer.
Colon, Phase I, Rectal
I
Ciombor, Kristen
NCT06696768
ETCGIP10655

Study of Targeted Therapy vs. Chemotherapy in Patients With Thyroid Cancer

Thyroid

This phase III trial compares the effect of cabozantinib versus combination dabrafenib and trametinib for the treatment of patients with differentiated thyroid cancer that does not respond to treatment (refractory) and which expresses a BRAF V600E mutation. Cabozantinib is in a class of medications called receptor tyrosine kinase inhibitors. It binds to and blocks the action of several enzymes which are often over-expressed in a variety of tumor cell types. This may help stop or slow the growth of tumor cells and blood vessels the tumor needs to survive. Dabrafenib is an enzyme inhibitor that binds to and inhibits the activity of a protein called B-raf, which may inhibit the proliferation of tumor cells which contain a mutated BRAF gene. Trametinib is also an enzyme inhibitor. It binds to and inhibits the activity of proteins called MEK 1 and 2, which play a key role in activating pathways that regulate cell growth. This may inhibit the growth of tumor cells mediated by these pathways. The usual approach for patients with thyroid cancer is targeted therapy with dabrafenib and trametinib. This trial may help researchers decide which treatment option (cabozantinib alone or dabrafenib in combination with trametinib) is safer and/or more effective in treating patients with refractory BRAF V600E-mutated differentiated thyroid cancer.
Thyroid
III
Choe, Jennifer
NCT06475989
ECOGHNEA3231

MAGIC Ruxolitinib for aGVHD

Multiple Cancer Types

This clinical trial will study ruxolitinib-based treatment of acute graft-versus-host-disease (GVHD) that developed following allogeneic hematopoietic cell transplant. Acute GVHD occurs when donor cells attack the healthy tissue of the body. The most common symptoms are skin rash, jaundice, nausea, vomiting, and/or diarrhea. The standard treatment for GVHD is high dose steroids such as prednisone or methylprednisolone, which suppresses the donor cells, but sometimes there can be either no response or the response does not last. In these cases, the GVHD can become dangerous or even life threatening. High dose steroid treatment can also cause serious complications. Researchers have developed a system, called the Minnesota risk system, to help predict how well the GVHD will respond to steroids based on the symptoms present at the time of diagnosis. The Minnesota risk system classifies patients with newly diagnosed acute GVHD into two groups with highly different responses to standard steroid treatment and long-term outcomes. This protocol maximizes efficiency because all patients with grade II-IV GVHD are eligible for screening and treatment is assigned according to patient risk. Patients with lower risk GVHD, Minnesota standard risk, have high response rates to steroid treatment. In this trial the researchers will test whether ruxolitinib alone is as effective (non-inferior) as steroid-free therapy and safe. Patients will be randomized to two different doses of ruxolitinib to identify the dose which maximizes efficacy while minimizing toxicities such as hematologic and infectious toxicities. Patients with higher risk GVHD, Minnesota high risk, have unacceptable outcomes with systemic corticosteroid treatment alone and the researchers will test whether adding ruxolitinib, a proven effective second line GVHD treatment, can improve outcomes when added to systemic corticosteroids as first line treatment.
Leukemia, Lymphoma, Multiple Myeloma, Myelodysplastic Syndrome
II
Kitko, Carrie
NCT06936566
VICCCTT25042

(89Zr Panitumumab) With PET/CT for Diagnosing Metastases in Patients With Head and Neck Squamous Cell Carcinoma

Head/Neck

The goal of this phase I clinical trial is to evaluate the usefulness of an imaging test (zirconium Zr89 panitumumab \[89Zr panitumumab\]) with positron emission tomography (PET)/computed tomography (CT) for diagnosing the spread of disease from where it first started (primary site) to other places in the body (metastasis) in patients with head and neck squamous cell carcinoma. Traditional PET/CT has a low positive predictive value for diagnosing metastatic disease in head and neck cancer. 89Zr panitumumab is an investigational imaging agent that contains radiolabeled anti-EGFR antibody which is overexpressed in head and neck cancer. The main question this study aims to answer is the sensitivity and specificity of 89Zr panitumumab for the detection of indeterminate metastatic lesions in head and neck cancer.

Participants will receive 89Zr panitumumab infusion and undergo 89Zr panitumumab PET/CT 1 to 5 days after infusion. Participants will otherwise receive standard of care evaluation and treatment for their indeterminate lesions.

Researchers will compare the 89Zr panitumumab to standard of care imaging modalities (magnetic resonance imaging (MRI), CT, and/or PET/CT).
Head/Neck
I
Topf, Michael
NCT05747625
VICCHN2279

Cabozantinib for Patients With Recurrent or Progressive Meningioma

Neuro-Oncology

A Phase II Study of Cabozantinib for Patients with Recurrent or Progressive Meningioma
Neuro-Oncology
II
Mohler, Alexander
NCT05425004
VICC-ITNEU23261

A Study to Evaluate the Safety, Tolerability of INCB160058 in Participants With Myeloproliferative Neoplasms

This study is being conducted to assess the Safety, Tolerability, and Pharmacokinetics of INCB160058 in Participants With Myeloproliferative Neoplasms.
Not Available
I
Kishtagari, Ashwin
NCT06313593
VICC-DTHEM24055P

An Open-label Study Comparing Lutetium (177Lu) Vipivotide Tetraxetan Versus Observation in PSMA Positive OMPC.

The purpose of this study is to evaluate the efficacy and safety of lutetium (177Lu) vipivotide tetraxetan (AAA617) in participants with oligometastatic prostate cancer (OMPC) progressing after definitive therapy to their primary tumor. The data generated from this study will provide evidence for the treatment of AAA617 in early-stage prostate cancer patients to control recurrent tumor from progressing to fatal metastatic disease while preserving quality of life by delaying treatment with androgen deprivation therapy (ADT).
Not Available
III
Schaffer, Kerry
NCT05939414
VICC-DTURO23342

Surgical Debulking Prior to Peptide Receptor Radionuclide Therapy in Well Differentiated Gastroenteropancreatic Neuroendocrine Tumors

Multiple Cancer Types

This phase IV trial evaluates how well giving standard of care (SOC) peptide receptor radionuclide therapy (PRRT) after SOC surgical removal of as much tumor as possible (debulking surgery) works in treating patients with grade 1 or 2, somatostatin receptor (SSTR) positive, gastroenteropancreatic neuroendocrine tumors (GEP-NETs) that have spread from where they first started (primary site) to the liver (hepatic metastasis). Lutetium Lu 177 dotatate is a radioactive drug that uses targeted radiation to kill tumor cells. Lutetium Lu 177 dotatate includes a radioactive form (an isotope) of the element called lutetium. This radioactive isotope (Lu-177) is attached to a molecule called dotatate. On the surface of GEP-NET tumor cells, a receptor called a somatostatin receptor binds to dotatate. When this binding occurs, the lutetium Lu 177 dotatate drug then enters somatostatin receptor-positive tumor cells, and radiation emitted by Lu-177 helps kill the cells. Giving lutetium Lu 177 dotatate after surgical debulking may better treat patients with grade 1/2 GEP-NETs
Colon, Esophageal, Gastric/Gastroesophageal, Gastrointestinal, Liver, Pancreatic, Rectal
N/A
Idrees, Kamran
NCT06016855
VICCGI2283

A Study Comparing Anitocabtagene Autoleucel to Standard of Care Therapy in Participants With Relapsed/ Refractory Multiple Myeloma

The goal of this study (iMMagine-3) is to compare the study drug, anitocabtagene autoleucel to standard of care therapy (SOCT) in participants with relapsed/refractory multiple myeloma who have received 1 to 3 prior lines of therapy, including an anti-CD38 monoclonal antibody and an immunomodulatory drug.

The primary objective of this study is to compare the efficacy of anitocabtagene autoleucel versus SOCT in participants with RRMM.
Not Available
III
Biltibo, Eden
NCT06413498
VICC-DTCTT23578

Prophylactic Reinforcement of Ventral Abdominal Incisions Trial

Miscellaneous

This trial is being conducted to evaluate the efficacy of Phasix Mesh implantation at the time of midline fascial closure compared to primary suture closure in preventing a subsequent incisional hernia in subjects at risk for incisional hernia after open midline laparotomy surgery.
Miscellaneous
IV
Pierce, Richard
NCT03911700
VICCGI2281

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.