Clinical Trials Search at Vanderbilt-Ingram Cancer Center
A Randomized Study of ASTX727 With or Without Iadademstat in Advanced Myeloproliferative Neoplasms (MPNs)
Leukemia
Leukemia
This phase II trial compares the effect of ASTX727 in combination with iadademstat to ASTX727 alone in treating patients with accelerated or blast phase Philadelphia chromosome negative myeloproliferative neoplasms (MPNs). ASTX727 is a combination of two drugs, cedazuridine and decitabine. Cedazuridine is in a class of medications called cytidine deaminase inhibitors. It prevents the breakdown of decitabine, making it more available in the body so that decitabine will have a greater effect. Decitabine is in a class of medications called hypomethylation agents. It works by helping the bone marrow produce normal blood cells and by killing abnormal cells in the bone marrow. Iadademstat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving ASTX727 in combination with iadademstat may be more effective than ASTX727 alone in treating patients with accelerated or blast phase Philadelphia chromosome negative MPNs.
Leukemia
II
Kishtagari, Ashwin
NCT06661915
ETCHEM10675
Gravity Versus Vacuum Based Indwelling Tunneled Pleural Drainage System
Lung
Lung
Malignant pleural effusion remains a debilitating complication of end stage cancer, which can be greatly improved by the introduction of the indwelling tunneled pleural catheter (IPC). However, there is no standard of care regarding drainage and limited data on the utility of different drainage techniques. In addition, many patients develop discomfort and chest pain during drainage. The investigators propose to evaluate gravity drainage and suction drainage on quality of life measures and outcomes.
Lung
N/A
Maldonado, Fabien
NCT03831386
VICCTHO19118
Sequential Therapy in Multiple Myeloma Guided by MRD Assessments
Multiple Myeloma
Multiple Myeloma
This research study will determine the proportion of patients with lowest minimal residual disease (MRD) response obtainable after receiving 6 cycles of study treatment. Minimal residual disease is multiple myeloma cells below the level of 1 cancer cell out of 100,000 in the bone marrow.
For patients who become MRD "negative" (i.e. less than 1 cancer cell out of 100,000) at the end of 6 cycles of therapy, this study will study if that good response can be maintained with 3 additional cycles of treatment instead of use of autologous hematopoietic cell transplantation (AHCT).
For patients who are MRD "positive" at the end of 6 cycles of therapy, this study will answer whether more patients can become and remain MRD "negative" with AHCT plus teclistamab in combination with daratumumab when compared with patients who undergo AHCT followed by lenalidomide (an established anti-myeloma drug) plus daratumumab.
For patients who become MRD "negative" (i.e. less than 1 cancer cell out of 100,000) at the end of 6 cycles of therapy, this study will study if that good response can be maintained with 3 additional cycles of treatment instead of use of autologous hematopoietic cell transplantation (AHCT).
For patients who are MRD "positive" at the end of 6 cycles of therapy, this study will answer whether more patients can become and remain MRD "negative" with AHCT plus teclistamab in combination with daratumumab when compared with patients who undergo AHCT followed by lenalidomide (an established anti-myeloma drug) plus daratumumab.
Multiple Myeloma
II
Baljevic, Muhamed
NCT05231629
VICC-ITPCL23014
Nilotinib Plus Dabrafenib/Trametinib or Encorafenib/Binimetinib in Metastatic Melanoma
Multiple Cancer Types
This is a phase 1 dose-escalation study of nilotinib in combination with fixed-dose dabrafenib and trametinib regimen for patients with metastatic or unresectable melanoma carrying a BRAF V600 mutation and have relapsed on a BRAF/MEK inhibitor therapy. The goal is to assess the toxicity and tolerability and determine the maximum tolerated dose (MTD)/recommended phase 2 dose (RP2D) of the combination of nilotinib with dabrafenib and trametinib or with encorafenib and binimetinib. Additionally, this study will assess pharmacokinetic parameters of dabrafenib and nilotinib when used in combination.
Melanoma,
Phase I
I
Johnson, Douglas
NCT04903119
VICCMELP2274
Safety and Tolerability of Ziftomenib Combinations in Patients With Relapsed/Refractory Acute Myeloid Leukemia
The safety, tolerability, and antileukemic response of ziftomenib in combination with standard of care treatments for patients with relapsed/refractory acute myeloid leukemia will be examined with the following agents: FLAG-IDA, low-dose cytarabine, and gilteritinib.
Not Available
I
Fedorov, Kateryna
NCT06001788
VICC-DTHEM23484P
Targeted Alpha-Particle Therapy for Advanced Somatostatin Receptor Type 2 (SSTR2) Positive Neuroendocrine Tumors
Multiple Cancer Types
This study is Phase I/IIa First-in-Human Study of \[212Pb\]VMT--NET Targeted Alpha-Particle Therapy for Advanced SSTR2 Positive Neuroendocrine Tumors
Neuroendocrine,
Phase I
I/II
Ramirez, Robert
NCT05636618
VICC-DTPHI23045
Hypofractionated Radiotherapy Followed by Surgical Resection in the Treatment of Soft Tissue Sarcomas
Sarcoma
Sarcoma
The trial will use neoadjuvant hypofractionated radiotherapy followed by surgical resection in the treatment for soft tissue sarcoma. It will allow patients to be treated over a shorter course (5 or 15 days of radiation) compared to the traditional 5 week regimen. It is proposed that this will be possible without increasing the risk of wound complication or local recurrence compared with a traditional 5 week course of pre-operative radiation.
Sarcoma
II
Shinohara, Eric
NCT04506008
VICCSAR2062
Testing the Addition of the Anti-Cancer Drug Tivozanib to Immunotherapy (Pembrolizumab) After Surgery to Remove All Known Sites of Kidney Cancer
Kidney (Renal Cell)
Kidney (Renal Cell)
This phase III trial compares the effect of adding tivozanib to standard therapy pembrolizumab versus pembrolizumab alone for the treatment of patients with high-risk renal cell carcinoma (RCC). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Tivozanib is in a class of medications called kinase inhibitors. It works by blocking the action of the abnormal protein that signals tumor cells to multiply. This helps stop the spread of tumor cells. Giving pembrolizumab and tivozanib together may work better than pembrolizumab alone in treating patients with RCC.
Kidney (Renal Cell)
III
Rini, Brian
NCT06661720
ALLUROA032201
Self-Management for Head and Neck Lymphedema and Fibrosis [PROMISE Trial]
Head/Neck
Head/Neck
The goal of this study is to evaluate the effectiveness of a standardized lymphedema and fibrosis self-management program (LEF-SMP) to improve LEF self-management and reduce LEF-associated symptom burden, functional deficits, and improve quality of life in head and neck cancer (HNC) survivors.
Head/Neck
N/A
Murphy, Barbara
NCT06125743
VICC-EDHAN23569
Testing the Addition of a New Anti-cancer Drug, M3814 (Peposertib), to the Usual Radiotherapy in Patients With Locally Advanced Pancreatic Cancer
Pancreatic
Pancreatic
This phase I/II trial studies the safety, side effects and best dose of M3814 and to see how well it works when given together with radiation therapy in treating patients with pancreatic cancer that has spread to nearby tissue or lymph nodes (locally advanced). M3814 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving M3814 and hypofractionated radiation therapy together may be safe, tolerable and/or more effective than radiation therapy alone in treating patients with locally advanced pancreatic cancer.
Pancreatic
I/II
Cardin, Dana
NCT04172532
NCIGIP10366