Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Phase 1 Study of INBRX-109 in Subjects With Locally Advanced or Metastatic Solid Tumors Including Sarcomas

Multiple Cancer Types

This is a first-in-human, open-label, non-randomized, three-part phase 1 trial of INBRX-109, which is a recombinant humanized tetravalent antibody targeting the human death receptor 5 (DR5).
Miscellaneous, Phase I
I
Davis, Elizabeth
NCT03715933
VICCMDP2287

E-Mindfulness Approaches for Living After Breast Cancer

Breast

NRG-CC015 is a prospective, randomized phase III clinical trial to evaluate the efficacy of two distinct digital approaches for delivering a mindfulness-based intervention: a live, instructor-led version delivered over Zoom (MAPs LO), and an app-based, self-paced version (MAPs App). Participants will include younger breast cancer survivors (BCS) who were diagnosed with breast cancer at or before age 50 years, have completed their primary cancer treatment (i.e., surgery, radiation, and/or chemotherapy) at least 6 months earlier, and report elevated depressive symptoms.
Breast
III
Kennedy, Laura
NCT06748222
NRGBRECC015

A Trial to Find Out How Safe REGN7075 is and How Well it Works in Combination With Cemiplimab for Adult Participants With Advanced Cancers

Multiple Cancer Types

This study is researching an investigational drug called marlotamig (REGN7075) by itself and in combination with cemiplimab with or without chemotherapy. The study is focused on patients with certain solid tumors that are in an advanced stage.

The aim of the study is to see how safe and tolerable marlotamig is by itself and in combination with cemiplimab (with or without chemotherapy), and to find out what is the best dose of marlotamig to be given to patients with advanced solid tumors when combined with cemiplimab (with or without chemotherapy). Another aim of the study is to see how effective marlotamig by itself, or in combination with cemiplimab (with or without chemotherapy), is at treating cancer patients.

The study is also looking at:

* Side effects that may be experienced by people taking marlotamig by itself and in combination with cemiplimab with or without chemotherapy
* How marlotamig works in the body by itself and in combination with cemiplimab with or without chemotherapy
* How much marlotamig is present in the blood when given by itself and in combination with cemiplimab with or without chemotherapy
* To see if marlotamig by itself and in combination with cemiplimab with or without chemotherapy works to treat cancer by controlling the proliferation of tumor cells to shrink the tumor
* Whether the body makes antibodies against the study drugs (marlotamig and cemiplimab) (which could make the drug less effective or could lead to side effects)
Adrenocortical, Bladder, Breast, Cervical, Colon, Esophageal, GIST, Gastric/Gastroesophageal, Gastrointestinal, Gynecologic, Head/Neck, Kidney (Renal Cell), Liver, Lung, Miscellaneous, Non Small Cell, Ovarian, Pancreatic, Phase I, Prostate, Rectal, Urologic, Uterine
I/II
Choe, Jennifer
NCT04626635
VICC-DTPHI24031

Phase 1b Study of OP-1250 (Palazestrant) in Combination With Ribociclib, Alpelisib, Everolimus, or Atirmociclib in ER+, HER2- Breast Cancer

Multiple Cancer Types

This is a Phase 1b open-label, 2-part study in 3 treatment groups. The 3 treatment groups are as follows:

Treatment Group 1: Palazestrant (OP-1250) in combination with ribociclib (KISQALI, Novartis Pharmaceuticals Corporation).

Treatment Group 2: Palazestrant (OP-1250) in combination with alpelisib (PIQRAY, Novartis Pharmaceuticals Corporation).

Treatment Group 3: Palazestrant (OP-1250) in combination with everolimus.

Treatment Group 4: Palazestrant (OP-1250) in combination with atirmociclib.
Breast, Phase I
I
Abramson, Vandana
NCT05508906
VICCBREP2267

Studying the Effect of Levocarnitine in Protecting the Liver From Chemotherapy for Leukemia or Lymphoma

This phase III trial compares the effect of adding levocarnitine to standard chemotherapy versus (vs.) standard chemotherapy alone in protecting the liver in patients with leukemia or lymphoma. Asparaginase is part of the standard of care chemotherapy for the treatment of acute lymphoblastic leukemia (ALL), lymphoblastic lymphoma (LL), and mixed phenotype acute leukemia (MPAL). However, in adolescent and young adults (AYA) ages 15-39 years, liver toxicity from asparaginase is common and often prevents delivery of planned chemotherapy, thereby potentially compromising outcomes. Some groups of people may also be at higher risk for liver damage due to the presence of fat in the liver even before starting chemotherapy. Patients who are of Japanese descent, Native Hawaiian, Hispanic or Latinx may be at greater risk for liver damage from chemotherapy for this reason. Carnitine is a naturally occurring nutrient that is part of a typical diet and is also made by the body. Carnitine is necessary for metabolism and its deficiency or absence is associated with liver and other organ damage. Levocarnitine is a drug used to provide extra carnitine. Laboratory and real-world usage of the dietary supplement levocarnitine suggests its potential to prevent or reduce liver toxicity from asparaginase. The overall goal of this study is to determine whether adding levocarnitine to standard of care chemotherapy will reduce the chance of developing severe liver damage from asparaginase chemotherapy in ALL, LL and/or MPAL patients.
Not Available
III
Not Available
NCT05602194
VICC-NTPED23475

A Study Using Risk Factors to Determine Treatment for Children With Favorable Histology Wilms Tumors (FHWT)

This phase III trial studies using risk factors in determining treatment for children with favorable tissue (histology) Wilms tumors (FHWT). Wilms Tumor is the most common type of kidney cancer in children, and FHWT is the most common subtype. Previous large clinical trials have established treatment plans that are likely to cure most children with FHWT, however some children still have their cancer come back (called relapse) and not all survive. Previous research has identified features of FHWT that are associated with higher or lower risks of relapse. The term "risk" refers to the chance of the cancer coming back after treatment. Using results of tumor histology tests, biology tests, and response to therapy may be able to improve treatment for children with FHWT.
Not Available
III
Not Available
NCT06401330
COGAREN2231

Docetaxel to Androgen Receptor Pathway Inhibitors in Patients With Metastatic Castration Sensitive Prostate Cancer and Suboptimal PSA Response

Prostate

This study is being done to answer the following question: can the chance of prostate cancer growing or spreading be lowered by adding a drug to the usual combination of drugs?

This study would like to find out if this approach is better or worse than the usual approach for prostate cancer.

The usual approach for patients who are not in a study is hormone treatment with Androgen Deprivation Therapy (ADT) and Androgen-Receptor Pathway Inhibitor (ARPI).
Prostate
III
Schaffer, Kerry
NCT06592924
ALLUROCCTGPR26

Open-Label Umbrella Study To Evaluate Safety And Efficacy Of Elacestrant In Various Combination In Participants With Metastatic Breast Cancer

Breast

This is a multicenter, Phase 1b/2 trial in participants with estrogen receptor positive/human epidermal growth factor receptor 2 negative (ER+/HER2-) advanced/metastatic breast cancer. The phase 1b part of the trial will determine the recommended Phase 2 dose (RP2D) of elacestrant when administered in combination with alpelisib, everolimus, palbociclib, capivasertib, and ribociclib. The Phase 2 part of the trial will evaluate the efficacy and safety of the various combinations.
Breast
I/II
Rexer, Brent
NCT05563220
VICC-DTBRE23166P

pBI-11 & TA-HPV (With Pembrolizumab as Treatment for Patients w/Advanced, PD-L1 CPS1, hrHPV+ Oropharyngeal Cancer

This phase II trial tests how well pB1-11 and human papillomavirus tumor antigen (TA-HPV) vaccines in combination with pembrolizumab work in treating patients with oropharyngeal cancer that has come back (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic) and that is PD-L1 and human papillomavirus (HPV) positive. Oropharyngeal cancer is a type of head and neck cancer involving structures in the back of the throat (the oropharynx), such as the non-bony back roof of the mouth (soft palate), sides and back wall of the throat, tonsils, and back third of the tongue. Scientists have found that some strains or types of a virus called HPV can cause oropharyngeal cancer. pBI-11 is a circular deoxyribonucleic acid (DNA) (plasmid) vaccine that promotes antibody, cytotoxic T cell, and protective immune responses. TA-HPV is an investigational recombinant vaccina virus derived from a strain of the vaccina virus which was widely used for smallpox vaccination. Vaccination with this TA-HPV vaccine may stimulate the immune system to mount a cytotoxic T cell response against tumor cells positive for HPV, resulting in decreased tumor growth. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread by inhibiting the PD-1 receptor. These investigational vaccines could cause or enhance an immune response in the body against HPV, during which time the activity of pembrolizumab against oropharyngeal cancer associated with HPV may be strengthened. These drugs in combination may be more effective in increasing the ability of the immune system to fight oropharyngeal cancer than pembrolizumab alone.
Not Available
II
Not Available
NCT05799144
VICCHN2208

Chemotherapy for the Treatment of Patients With Newly Diagnosed Very Low-Risk and Low Risk Fusion Negative Rhabdomyosarcoma

Pediatrics

Rhabdomyosarcoma is a type of cancer that occurs in the soft tissues in the body. This phase III trial aims to maintain excellent outcomes in patients with very low risk rhabdomyosarcoma (VLR-RMS) while decreasing the burden of therapy using treatment with 24 weeks of vincristine and dactinomycin (VA) and examines the use of centralized molecular risk stratification in the treatment of rhabdomyosarcoma. Another aim of the study it to find out how well patients with low risk rhabdomyosarcoma (LR-RMS) respond to standard chemotherapy when patients with VLR-RMS and patients who have rhabdomyosarcoma with DNA mutations get separate treatment. Finally, this study examines the effect of therapy intensification in patients who have RMS cancer with DNA mutations to see if their outcomes can be improved.
Pediatrics
III
Borinstein, Scott
NCT05304585
COGARST2032

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.