Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



A Multi-Institution Study of TGF Imprinted, Ex Vivo Expanded Universal Donor NK Cell Infusions as Adoptive Immunotherapy in Combination With Gemcitabine and Docetaxel in Patients With Relapsed or Refractory Pediatric Bone and Soft Tissue

Multiple Cancer Types

The purpose of this study is to determine if the addition of infusions of a type of immune cell called a "natural killer", or NK cell to the sarcoma chemotherapy regimen GEM/DOX (gemcitabine and docetaxel) can improve outcomes in people with childhood sarcomas that have relapsed or not responded to prior therapies.

The goals of this study are:

* To determine the safety and efficacy of the addition of adoptive transfer of universal donor, TGF imprinted (TGFi), expanded NK cells to the pediatric sarcoma salvage chemotherapeutic regimen gemcitabine/docetaxel (GEM/DOX) for treatment of relapsed and refractory pediatric sarcomas To determine the 6-month progression free survival achieved with this treatment in patients within cohorts of relapsed or refractory osteosarcoma, Ewing sarcoma, rhabdomyosarcoma and non-rhabdomyosarcoma soft tissue sarcoma.
* To identify toxicities related to treatment with GEM/DOX + TGFi expanded NK cells

Participants will receive study drugs that include chemotherapy and NK cells in cycles; each cycle is 21 days long and you can receive up to 8 cycles.

* Gemcitabine (GEM): via IV on Days 1 and 8
* Docetaxel (DOX): via IV on Day 8
* Prophylactic dexamethasone: Day 7-9 to prevent fluid retention and hypersensitivity reaction
* Peg-filgrastim (PEG-GCSF) or biosimilar: Day 9 to help your white blood cell recover and allow more chemotherapy to be given
* TGFi NK cells: via IV on Day 12
Pediatrics, Sarcoma
I/II
Borinstein, Scott
NCT05634369
VICCPED24617

Circulating Tumor DNA to Guide Changes in Standard of Care Chemotherapy

Breast

This phase II trial tests how well evaluating circulating tumor deoxyribonucleic acid (ctDNA) works to guide therapy-change decisions in treating patients with triple-negative breast cancer (TNBC) that has spread from where it first started (primary site) to other places in the body (metastatic). This study wants to learn if small pieces of DNA associated with a tumor (called circulating tumor DNA, or ctDNA) can be detected in investigational blood tests during the course of standard chemotherapy treatment for breast cancer, and whether information from such investigational ctDNA blood testing could possibly be used as an early indication of chemotherapy treatment failure. It is hoped that additional information from investigational blood testing for ctDNA could help doctors to switch more quickly from a standard chemotherapy treatment that typically has significant side effects and which may not be working, to a different standard treatment regimen against TNBC, called sacituzumab govitecan. Sacituzumab govitecan is a monoclonal antibody, called hRS7, linked to a chemotherapy drug, called irinotecan. hRS7 is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as TROP2 receptors, and delivers irinotecan to kill them. Studying ctDNA may assist doctors to change therapy earlier if needed, and may improve health outcomes in patients with metastatic TNBC.
Breast
II
Abramson, Vandana
NCT05770531
VICCBRE2257

Image-Based, In-Vivo Assessment of Tumor Hypoxia to Guide Hypoxia-Driven Adaptive Radiation Therapy

Miscellaneous

This study will apply novel MRI approaches with established sensitivity to tissue oxygen consumption and perfusion to predict hypoxia-associated radiation resistance, manifested as tumor recurrence and progression post-treatment.
Miscellaneous
Early I
Osmundson, Evan
NCT05996432
VICC-EDMDT23195

Testing What Happens When an Immunotherapy Drug (Pembrolizumab) is Given by Itself Compared to the Usual Treatment of Chemotherapy With Radiation After Surgery for Recurrent Head and Neck Squamous Cell Carcinoma

Head/Neck

This phase II trial studies the effect of pembrolizumab alone compared to the usual approach (chemotherapy \[cisplatin and carboplatin\] plus radiation therapy) after surgery in treating patients with head and neck squamous cell carcinoma that has come back (recurrent) or patients with a second head and neck cancer that is not from metastasis (primary). Radiation therapy uses high energy radiation or protons to kill tumor cells and shrink tumors. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of cancer cells. Carboplatin is also in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of cancer cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab alone after surgery may work better than the usual approach in shrinking recurrent or primary head and neck squamous cell carcinoma.
Head/Neck
II
Choe, Jennifer
NCT04671667
ECOGHNEA3191

A Multi-phase Study of ASTX030 (Azacitidine and Cedazuridine) in Myeloid Neoplasm Alone or in Combination With Venetoclax in AML (AZTOUND Study)

Multiple Cancer Types

Study ASTX030-01 is a multi-phase study comprising of Phases 1-3 Monotherapy arms and a Phase 1 Combination Therapy arm Phase 1 Monotherapy consists of an open-label Dose Escalation Stage (Stage A) using multiple cohorts at escalating dose levels of oral cedazuridine and azacitidine (only one study drug will be escalated at a time) followed by a Dose Expansion Stage (Stage B). Phase 2 Monotherapy is a randomized, open-label, crossover study to compare oral ASTX030 to subcutaneous (SC) azacitidine. Phase 3 Monotherapy is a randomized open-label crossover study comparing the final fixed dose of oral ASTX030 to SC azacitidine. Phase 1 Combination Therapy is an open-label, multicenter, randomized, exploratory study comparing ASTX030 and SC azacitidine in combination with venetoclax in participants with AML.

The duration of this multi-phase study is approximately 7 years.
Leukemia, Myelodysplastic Syndrome, Phase I
I/II/III
Savona, Michael
NCT04256317
VICCHEMP19146

Testing the Role of DNA Released From Tumor Cells Into the Blood in Guiding the Use of Immunotherapy After Surgical Removal of the Bladder, Kidney, Ureter, and Urethra for Urothelial Cancer Treatment, MODERN Study

This phase II/III trial examines whether patients who have undergone surgical removal of bladder, kidney, ureter or urethra, but require an additional treatment called immunotherapy to help prevent their urinary tract (urothelial) cancer from coming back, can be identified by a blood test. Many types of tumors tend to lose cells or release different types of cellular products including their DNA which is referred to as circulating tumor DNA (ctDNA) into the bloodstream before changes can be seen on scans. Health care providers can measure the level of ctDNA in blood or other bodily fluids to determine which patients are at higher risk for disease progression or relapse. In this study, a blood test is used to measure ctDNA and see if there is still cancer somewhere in the body after surgery and if giving a treatment will help eliminate the cancer. Immunotherapy with monoclonal antibodies, such as nivolumab and relatlimab, can help the body's immune system to attack the cancer, and can interfere with the ability of tumor cells to grow and spread. This trial may help doctors determine if ctDNA measurement in blood can better identify patients that need additional treatment, if treatment with nivolumab prolongs patients' life and whether the additional immunotherapy treatment with relatlimab extends time without disease progression or prolongs life of urothelial cancer patients who have undergone surgical removal of their bladder, kidney, ureter or urethra.
Not Available
II/III
Schaffer, Kerry
NCT05987241
ALLUROA032103

Measuring if Immunotherapy Plus Chemotherapy is Better Than Chemotherapy Alone for Patients With Aggressive Poorly Differentiated Sarcomas

This phase III trial compares the effect of immunotherapy (pembrolizumab) plus chemotherapy (doxorubicin) to chemotherapy (doxorubicin) alone in treating patients with dedifferentiated liposarcoma (DDLPS), undifferentiated pleomorphic sarcoma (UPS) or a related poorly differentiated sarcoma that has spread from where it first started (primary site) to other places in the body (metastatic) or that cannot be removed by surgery (unresectable). Doxorubicin is in a class of medications called anthracyclines. Doxorubicin damages the cell's deoxyribonucleic acid (DNA) and may kill tumor cells. It also blocks a certain enzyme needed for cell division and DNA repair. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Adding immunotherapy (pembrolizumab) to the standard chemotherapy (doxorubicin) may help patients with metastatic or unresectable DDLPS, UPS or a related poorly differentiated sarcoma live longer without having disease progression.
Not Available
III
Davis, Elizabeth
NCT06422806
VICC-NTSAR24139

Neoadjuvant Darolutamide Alone or in Combination With Standard Therapy for Stage II-IIIA, AR+, TNBC

Breast

This phase II trial compares the effect of adding darolutamide to standard therapy versus standard therapy alone before surgery for the treatment of patients with stage II-IIIA androgen receptor positive triple-negative breast carcinoma. Standard therapy before surgery for triple-negative breast cancer typically consists of a combination of chemotherapy and immunotherapy drugs. Chemotherapy drugs, such as carboplatin, paclitaxel, doxorubicin and cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Darolutamide is in a class of medications called androgen receptor inhibitors. It works by blocking the effects of androgen (a male reproductive hormone) to stop the growth and spread of tumor cells. Giving darolutamide in combination with standard therapy before surgery may make the tumor smaller and may reduce the amount of normal tissue that needs to be removed.
Breast
II
Abramson, Vandana
NCT07016399
VICC-VCBRE23490

A Study Evaluating the Efficacy and Safety of Multiple Treatment Combinations in Patients With Metastatic or Locally Advanced Breast Cancer

Multiple Cancer Types

This is an umbrella study evaluating the efficacy and safety of multiple treatment combinations in participants with metastatic or inoperable locally advanced breast cancer.

The study will be performed in two stages. During Stage 1, six cohorts will be enrolled in parallel in this study:

Cohort 1 will consist of programmed death-ligand 1 (PD-L1)-positive participants who have received no prior systemic therapy for metastatic or inoperable locally advanced triple-negative breast cancer (TNBC) (first-line \[1L\] PD-L1+ cohort).

Cohort 2 will consist of participants who had disease progression during or following 1L treatment with chemotherapy for metastatic or inoperable locally-advanced TNBC and have not received cancer immunotherapy (CIT) (second-line \[2L\] CIT-nave cohort).

Cohort 3, 5, and 6 will consist of participants with locally advanced or metastatic hormone receptor-positive (HR+), human epidermal growth factor receptor 2 (HER2)-negative disease with one or more PIK3CA mutations.

Cohort 4 will consist of participants with locally advanced or metastatic HER2+ /HER2-low disease with one or more PIK3CA mutations who had disease progression on standard-of-care therapies (HER2+ /HER2-low cohort).

In each cohort, eligible participants will initially be assigned to one of several treatment arms (Stage 1). During Stage 2, participants in the 2L CIT-nave cohort who experience disease progression, loss of clinical benefit, or unacceptable toxicity during Stage 1 may be eligible to continue treatment with a different treatment combination, provided Stage 2 is open for enrollment and all eligibility criteria are met.
Breast, Phase I
I/II
Kennedy, Laura
NCT03424005
VICCBREP2126

Active Myeloid Target Compound Combinations in MDS/MPN Overlap Syndromes Overlap Syndromes (ABNL-MARRO)

Multiple Cancer Types

ABNL-MARRO (A Basket study of Novel therapy for untreated MDS/MPN and Relapsed/Refractory Overlap Syndromes) is an international European-American cooperation providing the framework for collaborative studies to advance treatment of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) and explore clinical-pathologic markers of disease severity, prognosis and treatment response.

ABNL MARRO 001 (AM-001) is an Open label, phase 1/2 study within the framework of the ABNL-MARRO that will test novel treatment combinations in MDS/MPN. Each Arm of AM-001 will test an active myeloid target compound in combination with ASTX727, an oral drug combining fixed doses of the DNA methyltransferase inhibitor (DNMTi) decitabine and the cytidine deaminase inhibitor E7727, also known as cedazuridine in a single tablet.
Hematologic, Myelodysplastic Syndrome
I/II
Kishtagari, Ashwin
NCT04061421
VICCHEMP1977

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.