Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Expanded Access Protocol (EAP) for Nonconforming (NC) Afami-cel

Sarcoma

The purpose of this expanded access protocol (EAP) is to provide controlled access to Afamitresgene autoleucel, suspension for intravenous infusion that does not meet the commercial release specification (NC afami-cel). This EAP will be conducted at authorized treatment centers where TECELRA is being administered and where the EAP is approved to be conducted. Patients who are prescribed TECELRA , sign the informed consent form, and meet all entry criteria will be eligible to participate in this protocol.
Sarcoma
N/A
Keedy, Vicki
NCT06617572
VICCSAR24510

Cemiplimab for the Treatment of Locally Advanced Head and Neck Basal Cell Carcinoma Before Surgery

Head/Neck

This phase II trial tests how well cemiplimab works in treating basal cell carcinoma of the head and neck that has spread to nearby tissue or lymph nodes (locally advanced) before surgery (neoadjuvant). Cemiplimab is a human recombinant monoclonal IgG4 antibody that may allow the body's immune system to work against tumor cells. Giving cemiplimab before surgery may make the tumor smaller and make it easier to remove.
Head/Neck
II
Topf, Michael
NCT05929664
VICC-ITHAN23127

Phase I/II Trial in ES-SCLC to Enhance Response to Atezolizumab Plus Chemotherapy With Total Body Irradiation

Multiple Cancer Types

This phase I/II trial studies the side effects, safety, and effectiveness of low dose radiation to the entire body (total body irradiation \[TBI\]) and higher dose radiation to known areas of cancer (hypofractionated radiation therapy \[H-RT\]) combined with atezolizumab and chemotherapy (carboplatin \& etoposide) in treating patients with small cell lung cancer that has spread to disease sites outside of the lung (extensive stage). Extensive stage disease has historically been treated with chemotherapy alone with consideration of chest (thoracic) radiation therapy for those with response to chemotherapy, as well as consideration of preventative radiation therapy to the head (prophylactic cranial irradiation). Emerging evidence supports the synergistic interactions between immunotherapy and radiation therapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill tumor cells. Combining TBI and H-RT with atezolizumab and chemotherapy may improve response to treatment.
Lung, Small Cell
I/II
Osmundson, Evan
NCT06110572
VICCTHOP2206

A Study of Combination Chemotherapy for Patients With Newly Diagnosed DAWT and Relapsed FHWT

Multiple Cancer Types

This phase II trial studies how well combination chemotherapy works in treating patients with newly diagnosed stage II-IV diffuse anaplastic Wilms tumors (DAWT) or favorable histology Wilms tumors (FHWT) that have come back (relapsed). Drugs used in chemotherapy regimens such as UH-3 (vincristine, doxorubicin, cyclophosphamide, carboplatin, etoposide, and irinotecan) and ICE/Cyclo/Topo (ifosfamide, carboplatin, etoposide, cyclophosphamide, and topotecan) work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial may help doctors find out what effects, good and/or bad, regimen UH-3 has on patients with newly diagnosed DAWT and standard risk relapsed FHWT (those treated with only 2 drugs for the initial WT) and regimen ICE/Cyclo/Topo has on patients with high and very high risk relapsed FHWT (those treated with 3 or more drugs for the initial WT).
Pediatrics, Wilms / Other Kidney (Pediatrics)
II
Benedetti, Daniel
NCT04322318
COGAREN1921

A Study of a New Way to Treat Children and Young Adults With a Brain Tumor Called NGGCT

Multiple Cancer Types

This phase II trial studies the best approach to combine chemotherapy and radiation therapy (RT) based on the patient's response to induction chemotherapy in patients with non-germinomatous germ cell tumors (NGGCT) that have not spread to other parts of the brain or body (localized). This study has 2 goals: 1) optimizing radiation for patients who respond well to induction chemotherapy to diminish spinal cord relapses, 2) utilizing higher dose chemotherapy followed by conventional RT in patients who did not respond to induction chemotherapy. Chemotherapy drugs, such as carboplatin, etoposide, ifosfamide, and thiotepa, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays or high-energy protons to kill tumor cells and shrink tumors. Studies have shown that patients with newly-diagnosed localized NGGCT, whose disease responds well to chemotherapy before receiving radiation therapy, are more likely to be free of the disease for a longer time than are patients for whom the chemotherapy does not efficiently eliminate or reduce the size of the tumor. The purpose of this study is to see how well the tumors respond to induction chemotherapy to decide what treatment to give next. Some patients will be given RT to the spine and a portion of the brain. Others will be given high dose chemotherapy and a stem cell transplant before RT to the whole brain and spine. Giving treatment based on the response to induction chemotherapy may lower the side effects of radiation in some patients and adjust the therapy to a more efficient one for other patients with localized NGGCT.
Germ Cell (Pediatrics), Pediatrics
II
Esbenshade, Adam
NCT04684368
COGACNS2021

Lenalidomide, and Dexamethasone With or Without Daratumumab in Treating Patients With High-Risk Smoldering Myeloma

Multiple Myeloma

This phase III trial studies how well lenalidomide and dexamethasone works with or without daratumumab in treating patients with high-risk smoldering myeloma. Drugs used in chemotherapy, such as lenalidomide and dexamethasone, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as daratumumab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread. Giving lenalidomide and dexamethasone with daratumumab may work better in treating patients with smoldering myeloma.
Multiple Myeloma
III
Baljevic, Muhamed
NCT03937635
ECOGPCLEAA173

Atezolizumab + Sacituzumab Govitecan to Prevent Recurrence in TNBC (ASPRIA)

Breast

The purpose of this study is to determine if a combination of two drugs sacituzumab govitecan and atezolizumab works as a treatment for residual cancer in the breast or lymph nodes and have circulating tumor DNA in the blood.

This research study involves the following investigational drugs:

* Sacituzumab govitecan
* Atezolizumab
Breast
II
Abramson, Vandana
NCT04434040
VICCBRE2056

A Study of E7386 in Combination With Other Anticancer Drug(s) in Participants With Solid Tumor

Multiple Cancer Types

The primary objective of this study is to assess the safety and tolerability and to determine the recommended Phase 2 dose (RP2D) of E7386 in combination with other anticancer drug(s), and to determine the optimal dose of E7386 in combination with lenvatinib in endometrial carcinoma (EC) (for EC Dose Optimization Part only).
Gynecologic, Liver, Phase I
I
Crispens, Marta
NCT04008797
VICC-DTPHI23106

Prophylactic Reinforcement of Ventral Abdominal Incisions Trial

Miscellaneous

This trial is being conducted to evaluate the efficacy of Phasix Mesh implantation at the time of midline fascial closure compared to primary suture closure in preventing a subsequent incisional hernia in subjects at risk for incisional hernia after open midline laparotomy surgery.
Miscellaneous
IV
Pierce, Richard
NCT03911700
VICCGI2281

Testing the Effectiveness of Two Immunotherapy Drugs (Nivolumab and Ipilimumab) With One Anti-cancer Targeted Drug (Cabozantinib) for Rare Genitourinary Tumors

Multiple Cancer Types

This phase II trial studies how well cabozantinib works in combination with nivolumab and ipilimumab in treating patients with rare genitourinary (GU) tumors that has spread from where it first started (primary site) to other places in the body. Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib, nivolumab, and ipilimumab may work better in treating patients with genitourinary tumors that have no treatment options compared to giving cabozantinib, nivolumab, or ipilimumab alone.
Bladder, Kidney (Renal Cell), Rectal
II
Tan, Alan
NCT03866382
ALLIANCEUROA031702

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.