Clinical Trials Search at Vanderbilt-Ingram Cancer Center
Enhanced Recovery After Surgery in Extremity Sarcoma
Sarcoma
Sarcoma
The purpose of this study is to demonstrate the efficacy of implementing the enhanced recovery after surgery (ERAS) pathway in a prospective manner to patients undergoing surgical treatment for extremity sarcoma.
Sarcoma
N/A
Lawrenz, Joshua
NCT04461171
VICCSAR2020
Testing the Combination of the Anti-Cancer Drugs Temozolomide and M1774 to Evaluate Their Safety and Effectiveness
Multiple Cancer Types
This phase I/II trial studies the side effects and best dose of temozolomide and M1774 and how well they works in treating patients with cancer that has spread from where it first started (primary site) to other places in the body (metastatic) and may have spread to nearby tissue, lymph nodes, or distant parts of the body (advanced). Temozolomide is in a class of medications called alkylating agents. It works by damaging the cell's deoxyribonucleic acid (DNA) and may kill tumor cells and slow down or stop tumor growth. M1774 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Adding M1774 to temozolomide may shrink or stabilize cancer for longer than temozolomide alone.
Miscellaneous,
Phase I
I/II
Davis, Elizabeth
NCT05691491
VICCPHI10572
Cryodevitalization for the Treatment of Early Stage Lung Cancer, CRYSTAL Trial
Lung
Lung
This clinical trial studies side effects and best treatment time of cryodevitalization in treating patients with early stage (stage I or stage II) lung cancer. Cryodevitalization is a type of cryosurgery that uses a flexible probe (cryoprobe) to kill tumor cells by freezing them. It is delivered at the time of standard diagnostic robotic bronchoscopy. Using cryodevitalization may be safe, tolerable and/or effective in treating patients with early stage lung cancer.
Lung
N/A
Maldonado, Fabien
NCT06593106
VICC-VCTHO24099
A Study to Assess Adverse Events of Intravenously (IV) Infused ABBV-383 in Adult Participants With Relapsed or Refractory Multiple Myeloma
Multiple Myeloma (MM) is a cancer of the blood's plasma cells ( blood cell). The cancer is typically found in the bones and bone marrow (the spongy tissue inside of the bones) and can cause bone pain, fractures, infections, weaker bones, and kidney failure. Treatments are available, but MM can come back (relapsed) or may not get better (refractory) with treatment. This is a study to determine adverse events and change in disease symptoms of ABBV-383 in adult participants with relapsed/refractory (R/R) MM.
ABBV-383 is an investigational drug being developed for the treatment of R/R Multiple Myeloma (MM). This study is broken into 3 Arms; Arm A (Parts 1 and 2), Arm B and Arm C. Arm A includes 2 parts: step-up dose optimization (Part 1) and dose expansion (Part 2). In Part 1, different level of step-up doses are tested followed by the target dose of ABBV-383. In Part 2, the step-up dose identified in Part 1 (Dose A) will be used followed by the target dose A of ABBV-383. In Arm B a flat dose of ABBV-383 will be tested. "In Arm C, the step-up dose identified in Arm A will be used followed by the target dose of ABBV-383 to investigate outpatient administration of ABBV-383. Around 180 adult participants with relapsed/refractory multiple myeloma will be enrolled at approximately 40 sites across the world.
Participants will receive ABBV-383 as an infusion into the vein in 28 day cycles for approximately 3 years.
There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at a hospital or clinic. The effect of the treatment will be checked by medical assessments, blood tests, checking for side effects and questionnaires.
ABBV-383 is an investigational drug being developed for the treatment of R/R Multiple Myeloma (MM). This study is broken into 3 Arms; Arm A (Parts 1 and 2), Arm B and Arm C. Arm A includes 2 parts: step-up dose optimization (Part 1) and dose expansion (Part 2). In Part 1, different level of step-up doses are tested followed by the target dose of ABBV-383. In Part 2, the step-up dose identified in Part 1 (Dose A) will be used followed by the target dose A of ABBV-383. In Arm B a flat dose of ABBV-383 will be tested. "In Arm C, the step-up dose identified in Arm A will be used followed by the target dose of ABBV-383 to investigate outpatient administration of ABBV-383. Around 180 adult participants with relapsed/refractory multiple myeloma will be enrolled at approximately 40 sites across the world.
Participants will receive ABBV-383 as an infusion into the vein in 28 day cycles for approximately 3 years.
There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at a hospital or clinic. The effect of the treatment will be checked by medical assessments, blood tests, checking for side effects and questionnaires.
Not Available
I
Not Available
NCT05650632
VICC-DTPCL23010P
Clinical Trial of an Anti-cancer Drug, CA-4948 (Emavusertib), in Combination With Chemotherapy Treatment (FOLFOX Plus Bevacizumab) in Metastatic Colorectal Cancer
Multiple Cancer Types
This phase I trial studies the side effects and best dose of CA-4948 when given together with fluorouracil, leucovorin, oxaliplatin (FOLFOX) plus bevacizumab in treating patients with colorectal cancer that has spread from where it first started (primary site) to other places in the body (metastatic). CA-4948 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. The chemotherapy drugs used in FOLOX, fluorouracil and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Leucovorin is used with fluorouracil to treat colorectal cancer. Bevacizumab is in a class of medications called anti-angiogenic agents. It works by stopping the formation of blood vessels that bring oxygen and nutrients to the tumor. This may slow the growth and spread of the tumor. Giving CA-4948 with FOLFOX plus bevacizumab may be safe, tolerable and/or effective in treating patients with metastatic colorectal cancer.
Colon,
Phase I,
Rectal
I
Ciombor, Kristen
NCT06696768
ETCGIP10655
P-CD19CD20-ALLO1 Allogeneic CAR-T Cells in the Treatment of Subjects With B Cell Malignancies
Lymphoma
Lymphoma
Phase 1 study comprised of open-label, dose escalation and expansion cohort study of P-CD19CD20-ALLO1 allogeneic T stem cell memory (Tscm) CAR-T cells in subjects with relapsed/refractory B cell malignancies
Lymphoma
I
Dholaria, Bhagirathbhai
NCT06014762
VICC-DTCTT23163P
(89Zr Panitumumab) With PET/CT for Diagnosing Metastases in Patients With Head and Neck Squamous Cell Carcinoma
Head/Neck
Head/Neck
The goal of this phase I clinical trial is to evaluate the usefulness of an imaging test (zirconium Zr89 panitumumab \[89Zr panitumumab\]) with positron emission tomography (PET)/computed tomography (CT) for diagnosing the spread of disease from where it first started (primary site) to other places in the body (metastasis) in patients with head and neck squamous cell carcinoma. Traditional PET/CT has a low positive predictive value for diagnosing metastatic disease in head and neck cancer. 89Zr panitumumab is an investigational imaging agent that contains radiolabeled anti-EGFR antibody which is overexpressed in head and neck cancer. The main question this study aims to answer is the sensitivity and specificity of 89Zr panitumumab for the detection of indeterminate metastatic lesions in head and neck cancer.
Participants will receive 89Zr panitumumab infusion and undergo 89Zr panitumumab PET/CT 1 to 5 days after infusion. Participants will otherwise receive standard of care evaluation and treatment for their indeterminate lesions.
Researchers will compare the 89Zr panitumumab to standard of care imaging modalities (magnetic resonance imaging (MRI), CT, and/or PET/CT).
Participants will receive 89Zr panitumumab infusion and undergo 89Zr panitumumab PET/CT 1 to 5 days after infusion. Participants will otherwise receive standard of care evaluation and treatment for their indeterminate lesions.
Researchers will compare the 89Zr panitumumab to standard of care imaging modalities (magnetic resonance imaging (MRI), CT, and/or PET/CT).
Head/Neck
I
Topf, Michael
NCT05747625
VICCHN2279
A Study to Compare Standard Chemotherapy to Therapy With CPX-351 and/or Gilteritinib for Patients With Newly Diagnosed AML With or Without FLT3 Mutations
This phase III trial compares standard chemotherapy to therapy with liposome-encapsulated daunorubicin-cytarabine (CPX-351) and/or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and/or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and/or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3/ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and/or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.
Not Available
III
Not Available
NCT04293562
COGAAML1831
Lenalidomide, and Dexamethasone With or Without Daratumumab in Treating Patients With High-Risk Smoldering Myeloma
Multiple Myeloma
Multiple Myeloma
This phase III trial studies how well lenalidomide and dexamethasone works with or without daratumumab in treating patients with high-risk smoldering myeloma. Drugs used in chemotherapy, such as lenalidomide and dexamethasone, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as daratumumab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread. Giving lenalidomide and dexamethasone with daratumumab may work better in treating patients with smoldering myeloma.
Multiple Myeloma
III
Baljevic, Muhamed
NCT03937635
ECOGPCLEAA173
A Study of Amivantamab and FOLFIRI Versus Cetuximab/Bevacizumab and FOLFIRI in Participants With KRAS/NRAS and BRAF Wild-type Colorectal Cancer Who Have Previously Received Chemotherapy
Multiple Cancer Types
The purpose of this study is to compare how long the participants are disease-free (progression-free survival) and and the length of time until a participant dies (overall survival), when treated with amivantamab and chemotherapy with 5-fluorouracil, leucovorin calcium (folinic acid) or levoleucovorin, and irinotecan hydrochloride (FOLFIRI) versus either cetuximab or bevacizumab and FOLFIRI given to participants with Kirsten rat sarcoma viral oncogene/ neuroblastoma RAS viral oncogene homolog (KRAS/ NRAS) and v-raf murine sarcoma viral oncogene homolog B (BRAF) wild-type recurrent, unresectable or metastatic colorectal cancer who have previously received chemotherapy.
Colon,
Rectal
III
Eng, Cathy
NCT06750094
VICC-DTGIT24167