Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



A Study to Evaluate the Safety and Tolerability of TOS-358 in Adults With Select Solid Tumors

Multiple Cancer Types

The goal of this clinical trial is to evaluate the safety of TOS-358 in adults with select
solid tumors who meet study enrollment criteria. The main questions it aims to answer are:

1. what is the maximum tolerated dose and recommended dose for phase 2?

2. how safe and tolerable is TOS-358 at different dose levels when taken orally once or
twice per day?
Breast, Cervical, Gastrointestinal, Gynecologic, Head/Neck, Lung, Phase I, Urologic
I
Berlin, Jordan
NCT05683418
VICC-DTPHI23103

Phase 1b Combo w/ Ribociclib and Alpelisib

Multiple Cancer Types

This is a Phase 1b open-label, 2-part study in 2 treatment groups. The 2 treatment groups are
as follows:

Treatment Group 1: OP-1250 in combination with ribociclib (KISQALI, Novartis Pharmaceuticals
Corporation).

Treatment Group 2: OP-1250 in combination with alpelisib (PIQRAY, Novartis Pharmaceuticals
Corporation).
Breast, Phase I
I
Nunnery, Sara
NCT05508906
VICCBREP2267

A Study of E7386 in Combination With Other Anticancer Drug in Participants With Solid Tumor

Multiple Cancer Types

The primary objective of this study is to assess the safety and tolerability and to determine
the recommended Phase 2 dose (RP2D) of E7386 in combination with other anticancer drug(s).
Gynecologic, Liver, Phase I
I
Heumann, Thatcher
NCT04008797
VICC-DTPHI23106

Avelumab with Binimetinib, Sacituzumab Govitecan, or Liposomal Doxorubicin in Treating Patients with Stage IV or Unresectable, Recurrent Triple Negative Breast Cancer

Breast

This phase II trial studies how well the combination of avelumab with liposomal doxorubicin with or without binimetinib, or the combination of avelumab with sacituzumab govitecan works in treating patients with triple negative breast cancer that is stage IV or is not able to be removed by surgery (unresectable) and has come back (recurrent). Immunotherapy with checkpoint inhibitors like avelumab require activation of the patient's immune system. This trial includes a two week induction or lead-in of medications that can stimulate the immune system. It is our hope that this induction will improve the response to immunotherapy with avelumab. One treatment, sacituzumab govitecan, is a monoclonal antibody called sacituzumab linked to a chemotherapy drug called SN-38. Sacituzumab govitecan is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of tumor cells, known as TROP2 receptors, and delivers SN-38 to kill them. Another treatment, liposomal doxorubicin, is a form of the anticancer drug doxorubicin that is contained in very tiny, fat-like particles. It may have fewer side effects and work better than doxorubicin, and may enhance factors associated with immune response. The third medication is called binimetinib, which may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth, and may help activate the immune system. It is not yet known whether giving avelumab in combination with liposomal doxorubicin with or without binimetinib, or the combination of avelumab with sacituzumab govitecan will work better in treating patients with triple negative breast cancer.
Breast
II
Abramson, Vandana
NCT03971409
VICCBRE1987

Study to Evaluate Safety, Tolerability, and Optimal Dose of Candidate GBM Vaccine VBI-1901 in Recurrent GBM Subjects

Neuro-Oncology

The purpose of this study is to assess the safety and tolerability of VBI-1901 in subjects
with recurrent malignant gliomas (glioblastoma, or GBM).
Neuro-Oncology
I/II
Merrell, Ryan
NCT03382977
VICCNEUP2234

Ruxolitinib in Preventing Breast Cancer in Patients with High Risk and Precancerous Breast Lesions

Breast

This phase II trial studies how well ruxolitinib before surgery works in preventing breast cancer in patients with high risk and precancerous breast conditions. Ruxolitinib may changes the breast cell when administered to participants with precancerous breast conditions. Ruxolitinib may stop the growth of cells by blocking some of the enzymes needed for cell growth.
Breast
II
Meszoely, Ingrid
NCT02928978
VICCBRE1904

Dose Optimization and Expansion Study of DFV890 in Adult Patients With Myeloid Diseases

Hematologic

Study CDFV890G12101 is an open-label, phase 1b, multicenter study with a randomized two-dose
optimization part, and a dose expansion part consisting of two groups evaluating DFV890 in
patients with myeloid diseases. The purpose of this study is to assess the safety,
tolerability, pharmacokinetics, pharmacodynamics, efficacy and recommended dose for single
agent DFV890 in patients with lower risk (LR: very low, low or intermediate risk)
myelodysplastic syndromes (LR MDS) and lower risk chronic myelomonocytic leukemia (LR CMML).
Hematologic
I
Kishtagari, Ashwin
NCT05552469
VICC-DTHEM23007P

Talazoparib for the Treatment of BRCA 1/2 Mutant Metastatic Breast Cancer

Breast

This phase II trial studies how well talazoparib works for the treatment of breast cancer with a BRCA 1 or BRCA 2 gene mutation that has spread to other places in the body (metastatic). Talazoparib is a study drug that inhibits (stops) the normal activity of certain proteins called poly (ADP-ribose) polymerases also called PARPs. PARPs are proteins that help repair deoxyribonucleic acid (DNA) mutations. PARP inhibitors, such as talazoparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. PARPs are needed to repair mistakes that can happen in DNA when cells divide. If the mistakes are not repaired, the defective cell will usually die and be replaced. Cells with mistakes in their DNA that do not die can become tumor cells. Tumor cells may be killed by a study drug, like talazoparib, that stops the normal activity of PARPs. Talazoparib may be effective in the treatment of metastatic breast cancer with BRCA1 or BRCA2 mutations.
Breast
II
Abramson, Vandana
NCT03990896
VICCBRE2265

Open-Label Study of the CDK4/6 Inhibitor SPH4336 in Subjects With Locally Advanced or Metastatic Liposarcomas

Sarcoma

Study SPH4336-US-01 is an open-label (no placebo), multicenter clinical trial to evaluate the
safety, blood levels (pharmacokinetics) and preliminary anti-tumor effects of SPH4336, a
selective enzyme blocker, in patients with specific types of liposarcomas (tumors expressing
the target of the study drug).
Sarcoma
II
Keedy, Vicki
NCT05580588
VICC-DTSAR23090

A Trial Comparing Unrelated Donor BMT With IST for Pediatric and Young Adult Patients With Severe Aplastic Anemia (TransIT, BMT CTN 2202)

Pediatrics

Severe Aplastic Anemia (SAA) is a rare condition in which the body stops producing enough new
blood cells. SAA can be cured with immune suppressive therapy or a bone marrow transplant.
Regular treatment for patients with aplastic anemia who have a matched sibling (brother or
sister), or family donor is a bone marrow transplant. Patients without a matched family donor
normally are treated with immune suppressive therapy (IST). Match unrelated donor (URD) bone
marrow transplant (BMT) is used as a secondary treatment in patients who did not get better
with IST, had their disease come back, or a new worse disease replaced it (like leukemia).

This trial will compare time from randomization to failure of treatment or death from any
cause of IST versus URD BMT when used as initial therapy to treat SAA.

The trial will also assess whether health-related quality of life and early markers of
fertility differ between those randomized to URD BMT or IST, as well as assess the presence
of marrow failure-related genes and presence of gene mutations associated with MDS or
leukemia and the change in gene signatures after treatment in both study arms.

This study treatment does not include any investigational drugs. The medicines and procedures
in this study are standard for treatment of SAA.
Pediatrics
III
Connelly, James
NCT05600426
VICCPED2295

To learn more about any of our clinical
trials, call 615-936-8422.