Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Testing What Happens When an Immunotherapy Drug (Pembrolizumab) is Given by Itself Compared to the Usual Treatment of Chemotherapy With Radiation After Surgery for Recurrent Head and Neck Squamous Cell Carcinoma

Head/Neck

This phase II trial studies the effect of pembrolizumab alone compared to the usual approach (chemotherapy \[cisplatin and carboplatin\] plus radiation therapy) after surgery in treating patients with head and neck squamous cell carcinoma that has come back (recurrent) or patients with a second head and neck cancer that is not from metastasis (primary). Radiation therapy uses high energy radiation or protons to kill tumor cells and shrink tumors. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of cancer cells. Carboplatin is also in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of cancer cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab alone after surgery may work better than the usual approach in shrinking recurrent or primary head and neck squamous cell carcinoma.
Head/Neck
II
Choe, Jennifer
NCT04671667
ECOGHNEA3191

A Study to Test the Addition of the Drug Cabozantinib to Chemotherapy in Patients With Newly Diagnosed Osteosarcoma

This phase II/III trial tests the safety, side effects, and best dose of the drug cabozantinib in combination with standard chemotherapy, and to compare the effect of adding cabozantinib to standard chemotherapy alone in treating patients with newly diagnosed osteosarcoma. Cabozantinib is in a class of medications called kinase inhibitors which block protein signals affecting new blood vessel formation and the ability to activate growth signaling pathways. This may help slow the growth of tumor cells. The drugs used in standard chemotherapy for this trial are methotrexate, doxorubicin, and cisplatin (MAP). Methotrexate stops cells from making DNA and may kill tumor cells. It is a type of antimetabolite. Doxorubicin is in a class of medications called anthracyclines. It works by slowing or stopping the growth of tumor cells in the body. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of tumor cells. Adding cabozantinib to standard chemotherapy may work better in treating newly diagnosed osteosarcoma.
Not Available
II/III
Not Available
NCT05691478
VICC-NTPED23198

Study of Targeted Therapy vs. Chemotherapy in Patients With Thyroid Cancer

Thyroid

This phase III trial compares the effect of cabozantinib versus combination dabrafenib and trametinib for the treatment of patients with differentiated thyroid cancer that does not respond to treatment (refractory) and which expresses a BRAF V600E mutation. Cabozantinib is in a class of medications called receptor tyrosine kinase inhibitors. It binds to and blocks the action of several enzymes which are often over-expressed in a variety of tumor cell types. This may help stop or slow the growth of tumor cells and blood vessels the tumor needs to survive. Dabrafenib is an enzyme inhibitor that binds to and inhibits the activity of a protein called B-raf, which may inhibit the proliferation of tumor cells which contain a mutated BRAF gene. Trametinib is also an enzyme inhibitor. It binds to and inhibits the activity of proteins called MEK 1 and 2, which play a key role in activating pathways that regulate cell growth. This may inhibit the growth of tumor cells mediated by these pathways. The usual approach for patients with thyroid cancer is targeted therapy with dabrafenib and trametinib. This trial may help researchers decide which treatment option (cabozantinib alone or dabrafenib in combination with trametinib) is safer and/or more effective in treating patients with refractory BRAF V600E-mutated differentiated thyroid cancer.
Thyroid
III
Choe, Jennifer
NCT06475989
ECOGHNEA3231

A Study to Compare Blinatumomab Alone to Blinatumomab With Nivolumab in Patients Diagnosed With First Relapse B-Cell Acute Lymphoblastic Leukemia (B-ALL)

This phase II trial studies the effect of nivolumab in combination with blinatumomab compared to blinatumomab alone in treating patients with B-cell acute lymphoblastic leukemia (B-ALL) that has come back (relapsed). Down syndrome patients with relapsed B-ALL are included in this study. Blinatumomab is an antibody, which is a protein that identifies and targets specific molecules in the body. Blinatumomab searches for and attaches itself to the cancer cell. Once attached, an immune response occurs which may kill the cancer cell. Nivolumab is a medicine that may boost a patient's immune system. Giving nivolumab in combination with blinatumomab may cause the cancer to stop growing for a period of time, and for some patients, it may lessen the symptoms, such as pain, that are caused by the cancer.
Not Available
II
Not Available
NCT04546399
COGAALL1821

Heated Intraperitoneal Chemotherapy Followed by Niraparib for Ovarian, Primary Peritoneal and Fallopian Tube Cancer

Ovarian

Patients will be registered prior to, during or at the completion of neoadjuvant chemotherapy (Paclitaxel 175 mg/m2 IV over 3 hours and Carboplatin AUC 6 IV on Day 1 every 21 days for 3-4 cycles). Registered patients who progress during neoadjuvant chemotherapy will not be eligible for iCRS and will be removed from the study.

Following completion of neoadjuvant chemotherapy, interval cytoreductive surgery (iCRS) will be performed in the usual fashion in both arms. Patients will be randomized at the time of iCRS (iCRS must achieve no gross residual disease or no disease \>1.0 cm in largest diameter) to receive HIPEC or no HIPEC. Patients randomized to HIPEC (Arm A) will receive a single dose of cisplatin (100mg/m2 IP over 90 minutes at 42 C) as HIPEC. After postoperative recovery patients will receive standard post-operative platinum-based combination chemotherapy. Patients randomized to surgery only (Arm B) will receive postoperative standard chemotherapy after recovery from surgery.

Both groups will receive an additional 2-3 cycles of platinum-based combination chemotherapy per institutional standard (Paclitaxel 175 mg/m2 IV over 3 hours and Carboplatin AUC 6 IV on Day 1 every 21 days for 2-3 cycles) for a maximum total of 6 cycles of chemotherapy (neoadjuvant plus post-operative cycles) followed by niraparib individualized dosing until progression or 36 months (if no evidence of disease).
Ovarian
III
Crispens, Marta
NCT05659381
VICC-DTGYN23355

Self-Management for Head and Neck Lymphedema and Fibrosis [PROMISE Trial]

Head/Neck

The goal of this study is to evaluate the effectiveness of a standardized lymphedema and fibrosis self-management program (LEF-SMP) to improve LEF self-management and reduce LEF-associated symptom burden, functional deficits, and improve quality of life in head and neck cancer (HNC) survivors.
Head/Neck
N/A
Murphy, Barbara
NCT06125743
VICC-EDHAN23569

Sequential Therapy in Multiple Myeloma Guided by MRD Assessments

Multiple Myeloma

This research study will determine the proportion of patients with lowest minimal residual disease (MRD) response obtainable after receiving 6 cycles of study treatment. Minimal residual disease is multiple myeloma cells below the level of 1 cancer cell out of 100,000 in the bone marrow.

For patients who become MRD "negative" (i.e. less than 1 cancer cell out of 100,000) at the end of 6 cycles of therapy, this study will study if that good response can be maintained with 3 additional cycles of treatment instead of use of autologous hematopoietic cell transplantation (AHCT).

For patients who are MRD "positive" at the end of 6 cycles of therapy, this study will answer whether more patients can become and remain MRD "negative" with AHCT plus teclistamab in combination with daratumumab when compared with patients who undergo AHCT followed by lenalidomide (an established anti-myeloma drug) plus daratumumab.
Multiple Myeloma
II
Baljevic, Muhamed
NCT05231629
VICC-ITPCL23014

Expanded Access Study for the Treatment of Patients With Commercially Out-of-Specification Axicabtagene Ciloleucel

Lymphoma

The goal of this study is to provide access to axicabtagene ciloleucel for patients diagnosed with a disease approved for treatment with axicabtagene ciloleucel, that is otherwise out of specification for commercial release.
Lymphoma
N/A
Jallouk, Andrew
NCT05776160
VICC-XDCTT23452

A Global Study of Volrustomig (MEDI5752) for Participants With Unresected Locally Advanced Head and Neck Squamous Cell Carcinoma Following Definitive Concurrent Chemoradiotherapy

The main purpose of this study is to assess the efficacy and safety of volrustomig compared to observation in participants with unresected locally advanced head and neck squamous cell carcinoma (LA-HNSCC) who have not progressed after receiving definitive concurrent chemoradiotherapy (cCRT).
Not Available
III
Choe, Jennifer
NCT06129864
VICC-DTHAN24071

Hypofractionated Radiotherapy Followed by Surgical Resection in the Treatment of Soft Tissue Sarcomas

Sarcoma

The trial will use neoadjuvant hypofractionated radiotherapy followed by surgical resection in the treatment for soft tissue sarcoma. It will allow patients to be treated over a shorter course (5 or 15 days of radiation) compared to the traditional 5 week regimen. It is proposed that this will be possible without increasing the risk of wound complication or local recurrence compared with a traditional 5 week course of pre-operative radiation.
Sarcoma
II
Shinohara, Eric
NCT04506008
VICCSAR2062

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.