Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



A Study of TAR-200 Versus Intravesical Chemotherapy in Participants With Recurrent High-Risk Non-Muscle-Invasive Bladder Cancer (HR-NMIBC) After Bacillus Calmette-Gurin (BCG)

Bladder

The purpose of this study is to compare disease free survival (DFS) in participants with recurrence of papillary-only high-risk non-muscle-invasive bladder cancer (HR-NMIBC) within 1 year of last dose of Bacillus Calmette-Gurin (BCG) therapy and who refused or are unfit for Radical Cystectomy (RC), receiving TAR-200 versus investigator's choice of single agent intravesical chemotherapy.
Bladder
III
Luckenbaugh, Amy
NCT06211764
VICC-DDURO24103

A Study of Oral Nuvisertib (TP-3654) in Patients With Myelofibrosis

Leukemia

This study is a Phase 1/2, multicenter, dose-escalation, open-label trial to assess safety, tolerability, pharmacokinetics and pharmacodynamics of nuvisertib (TP-3654) in patients with intermediate or high-risk primary or secondary MF.
Leukemia
I/II
Kishtagari, Ashwin
NCT04176198
VICC-DTHEM23002P

Measuring if Immunotherapy Plus Chemotherapy is Better Than Chemotherapy Alone for Patients With Aggressive Poorly Differentiated Sarcomas

This phase III trial compares the effect of immunotherapy (pembrolizumab) plus chemotherapy (doxorubicin) to chemotherapy (doxorubicin) alone in treating patients with dedifferentiated liposarcoma (DDLPS), undifferentiated pleomorphic sarcoma (UPS) or a related poorly differentiated sarcoma that has spread from where it first started (primary site) to other places in the body (metastatic) or that cannot be removed by surgery (unresectable). Doxorubicin is in a class of medications called anthracyclines. Doxorubicin damages the cell's deoxyribonucleic acid (DNA) and may kill tumor cells. It also blocks a certain enzyme needed for cell division and DNA repair. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Adding immunotherapy (pembrolizumab) to the standard chemotherapy (doxorubicin) may help patients with metastatic or unresectable DDLPS, UPS or a related poorly differentiated sarcoma live longer without having disease progression.
Not Available
III
Davis, Elizabeth
NCT06422806
VICC-NTSAR24139

Phase I/II Trial in ES-SCLC to Enhance Response to Atezolizumab Plus Chemotherapy With Total Body Irradiation

Multiple Cancer Types

This phase I/II trial studies the side effects, safety, and effectiveness of low dose radiation to the entire body (total body irradiation \[TBI\]) and higher dose radiation to known areas of cancer (hypofractionated radiation therapy \[H-RT\]) combined with atezolizumab and chemotherapy (carboplatin \& etoposide) in treating patients with small cell lung cancer that has spread to disease sites outside of the lung (extensive stage). Extensive stage disease has historically been treated with chemotherapy alone with consideration of chest (thoracic) radiation therapy for those with response to chemotherapy, as well as consideration of preventative radiation therapy to the head (prophylactic cranial irradiation). Emerging evidence supports the synergistic interactions between immunotherapy and radiation therapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill tumor cells. Combining TBI and H-RT with atezolizumab and chemotherapy may improve response to treatment.
Lung, Small Cell
I/II
Osmundson, Evan
NCT06110572
VICCTHOP2206

An Open Label, Expanded Access Protocol using 131I-Metaiodobenzylguanidine (131I-MIBG) Therapy in Patients with Refractory Neuroblastoma, Pheochromocytoma, or Paraganglioma

Multiple Cancer Types

Neuroblastoma (Pediatrics), Pediatric Solid Tumors
N/A
Kitko, Carrie
NCT01590680
VICCPED1249

A Study to Evaluate INCA033989 Administered as a Monotherapy or in Combination With Ruxolitinib in Participants With Myeloproliferative Neoplasms

Leukemia

This study is being conducted to evaluate the safety, tolerability, dose-limiting toxicity (DLT) and determine the maximum tolerated dose (MTD) and/or recommended dose(s) for expansion (RDE) of INCA033989 administered as a Monotherapy or in Combination With Ruxolitinib in participants with myeloproliferative neoplasms.
Leukemia
I
Mohan, Sanjay
NCT06034002
VICC-DTHEM23416P


A Study of CBX-250 in Participants With Acute Myeloid Leukemia, High-Risk Myelodysplastic Syndrome or Chronic Myelomonocytic Leukemia

Multiple Cancer Types

Study CBX-250-001 is a Phase 1, open-label, dose-escalation study of CBX-250 in participants with relapsed/refractory AML, HR-MDS and CMML. Participants aged 12 years are planned to be enrolled. CBX-250 will initially be investigated on a fixed step-up dosing schedule. CBX-250 will be administered subcutaneously in 28-day cycles, with the first study drug dose administered on Cycle 1, Day 1. Cycle 1 will consist of a priming phase over 7 days, and a target phase over 28 days. Participants will continue CBX-250 until progressive disease (PD) or unacceptable toxicity. All subsequent treatment cycles will be 28 days.
Leukemia, Myelodysplastic Syndrome
I
Ball, Somedeb
NCT06994676
VICCHEMP25017

Phase II Panitumumab-IRDye800 in Head & Neck Cancer

Head/Neck

The purpose of this study is to determine if panitumumab-IRDye800 is effective in identifying cancer, compared to surrounding normal tissue, and the further characterize the safety profile of this drug.
Head/Neck
II
Rosenthal, Eben
NCT04511078
VICCHN21109

Circulating Tumor DNA to Guide Changes in Standard of Care Chemotherapy

Breast

This phase II trial tests how well evaluating circulating tumor deoxyribonucleic acid (ctDNA) works to guide therapy-change decisions in treating patients with triple-negative breast cancer (TNBC) that has spread from where it first started (primary site) to other places in the body (metastatic). This study wants to learn if small pieces of DNA associated with a tumor (called circulating tumor DNA, or ctDNA) can be detected in investigational blood tests during the course of standard chemotherapy treatment for breast cancer, and whether information from such investigational ctDNA blood testing could possibly be used as an early indication of chemotherapy treatment failure. It is hoped that additional information from investigational blood testing for ctDNA could help doctors to switch more quickly from a standard chemotherapy treatment that typically has significant side effects and which may not be working, to a different standard treatment regimen against TNBC, called sacituzumab govitecan. Sacituzumab govitecan is a monoclonal antibody, called hRS7, linked to a chemotherapy drug, called irinotecan. hRS7 is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as TROP2 receptors, and delivers irinotecan to kill them. Studying ctDNA may assist doctors to change therapy earlier if needed, and may improve health outcomes in patients with metastatic TNBC.
Breast
II
Abramson, Vandana
NCT05770531
VICCBRE2257

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.