Clinical Trials Search at Vanderbilt-Ingram Cancer Center
A Study to Assess Adverse Events of Intravenously (IV) Infused ABBV-383 in Adult Participants With Relapsed or Refractory Multiple Myeloma
Multiple Myeloma (MM) is a cancer of the blood's plasma cells ( blood cell). The cancer is typically found in the bones and bone marrow (the spongy tissue inside of the bones) and can cause bone pain, fractures, infections, weaker bones, and kidney failure. Treatments are available, but MM can come back (relapsed) or may not get better (refractory) with treatment. This is a study to determine adverse events and change in disease symptoms of ABBV-383 in adult participants with relapsed/refractory (R/R) MM.
ABBV-383 is an investigational drug being developed for the treatment of R/R Multiple Myeloma (MM). This study is broken into 3 Arms; Arm A (Parts 1 and 2), Arm B and Arm C. Arm A includes 2 parts: step-up dose optimization (Part 1) and dose expansion (Part 2). In Part 1, different level of step-up doses are tested followed by the target dose of ABBV-383. In Part 2, the step-up dose identified in Part 1 (Dose A) will be used followed by the target dose A of ABBV-383. In Arm B a flat dose of ABBV-383 will be tested. "In Arm C, the step-up dose identified in Arm A will be used followed by the target dose of ABBV-383 to investigate outpatient administration of ABBV-383. Around 180 adult participants with relapsed/refractory multiple myeloma will be enrolled at approximately 40 sites across the world.
Participants will receive ABBV-383 as an infusion into the vein in 28 day cycles for approximately 3 years.
There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at a hospital or clinic. The effect of the treatment will be checked by medical assessments, blood tests, checking for side effects and questionnaires.
ABBV-383 is an investigational drug being developed for the treatment of R/R Multiple Myeloma (MM). This study is broken into 3 Arms; Arm A (Parts 1 and 2), Arm B and Arm C. Arm A includes 2 parts: step-up dose optimization (Part 1) and dose expansion (Part 2). In Part 1, different level of step-up doses are tested followed by the target dose of ABBV-383. In Part 2, the step-up dose identified in Part 1 (Dose A) will be used followed by the target dose A of ABBV-383. In Arm B a flat dose of ABBV-383 will be tested. "In Arm C, the step-up dose identified in Arm A will be used followed by the target dose of ABBV-383 to investigate outpatient administration of ABBV-383. Around 180 adult participants with relapsed/refractory multiple myeloma will be enrolled at approximately 40 sites across the world.
Participants will receive ABBV-383 as an infusion into the vein in 28 day cycles for approximately 3 years.
There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at a hospital or clinic. The effect of the treatment will be checked by medical assessments, blood tests, checking for side effects and questionnaires.
Not Available
I
Not Available
NCT05650632
VICC-DTPCL23010P
Anti-Lag-3 (Relatlimab) and Anti-PD-1 Blockade (Nivolumab) Versus Standard of Care (Lomustine) for the Treatment of Patients With Recurrent Glioblastoma
Neuro-Oncology
Neuro-Oncology
This phase II trial compares the safety, side effects and effectiveness of anti-lag-3 (relatlimab) and anti-PD-1 blockade (nivolumab) to standard of care lomustine for the treatment of patients with glioblastoma that has come back after a period of improvement (recurrent). Relatlimab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the tumor, and may interfere with the ability of tumor cells to grow and spread. Lomustine is a chemotherapy drug and in a class of medications called alkylating agents. It damages the cell's deoxyribonucleic acid and may kill tumor cells. Giving relatlimab and nivolumab may be safe, tolerable, and/or effective compared to standard of care lomustine in treating patients with recurrent glioblastoma.
Neuro-Oncology
II
Mohler, Alexander
NCT06325683
ALLNEUA072201
Expanded Access Protocol (EAP) for Nonconforming (NC) Afami-cel
Sarcoma
Sarcoma
The purpose of this expanded access protocol (EAP) is to provide controlled access to Afamitresgene autoleucel, suspension for intravenous infusion that does not meet the commercial release specification (NC afami-cel). This EAP will be conducted at authorized treatment centers where TECELRA is being administered and where the EAP is approved to be conducted. Patients who are prescribed TECELRA , sign the informed consent form, and meet all entry criteria will be eligible to participate in this protocol.
Sarcoma
N/A
Keedy, Vicki
NCT06617572
VICCSAR24510
Open-label of Loncastuximab Tesirine (ADCT-402) in Relapsed/Refractory Marginal Zone Lymphoma
Lymphoma
Lymphoma
The purpose of this research study is to see if loncastuximab tesirine has any benefits at dose levels researchers found acceptable in earlier studies in patients with related forms of immune cell cancers. The researchers want to find out the effects (good and bad) that loncastuximab tesirine has on the participant and the participant's condition.
Lymphoma
II
Oluwole, Olalekan
NCT05296070
VICC-ITCTT23024
MAGIC Ruxolitinib for aGVHD
Multiple Cancer Types
This clinical trial will study ruxolitinib-based treatment of acute graft-versus-host-disease (GVHD) that developed following allogeneic hematopoietic cell transplant. Acute GVHD occurs when donor cells attack the healthy tissue of the body. The most common symptoms are skin rash, jaundice, nausea, vomiting, and/or diarrhea. The standard treatment for GVHD is high dose steroids such as prednisone or methylprednisolone, which suppresses the donor cells, but sometimes there can be either no response or the response does not last. In these cases, the GVHD can become dangerous or even life threatening. High dose steroid treatment can also cause serious complications. Researchers have developed a system, called the Minnesota risk system, to help predict how well the GVHD will respond to steroids based on the symptoms present at the time of diagnosis. The Minnesota risk system classifies patients with newly diagnosed acute GVHD into two groups with highly different responses to standard steroid treatment and long-term outcomes. This protocol maximizes efficiency because all patients with grade II-IV GVHD are eligible for screening and treatment is assigned according to patient risk. Patients with lower risk GVHD, Minnesota standard risk, have high response rates to steroid treatment. In this trial the researchers will test whether ruxolitinib alone is as effective (non-inferior) as steroid-free therapy and safe. Patients will be randomized to two different doses of ruxolitinib to identify the dose which maximizes efficacy while minimizing toxicities such as hematologic and infectious toxicities. Patients with higher risk GVHD, Minnesota high risk, have unacceptable outcomes with systemic corticosteroid treatment alone and the researchers will test whether adding ruxolitinib, a proven effective second line GVHD treatment, can improve outcomes when added to systemic corticosteroids as first line treatment.
Leukemia,
Lymphoma,
Multiple Myeloma,
Myelodysplastic Syndrome
II
Kitko, Carrie
NCT06936566
VICCCTT25042
Digoxin Medulloblastoma Study
Multiple Cancer Types
The purpose of this study is to evaluate the efficacy of digoxin in treating relapsed non-SHH, non-WNT medulloblastoma in pediatric and young adult patients.
Neuro-Oncology,
Pediatrics
II
Esbenshade, Adam
NCT06701812
VICCPED24621
A Study to Evaluate the Safety and Tolerability of TOS-358 in Adults With HR+ Breast Cancer and Other Select Solid Tumors
Multiple Cancer Types
The goal of this clinical trial is to evaluate the safety of TOS-358 in adults with select solid tumors who meet study enrollment criteria. The main questions it aims to answer are:
1. what is the maximum tolerated dose and recommended dose for phase 2?
2. how safe and tolerable is TOS-358 at different dose levels when taken orally once or twice per day?
1. what is the maximum tolerated dose and recommended dose for phase 2?
2. how safe and tolerable is TOS-358 at different dose levels when taken orally once or twice per day?
Breast,
Cervical,
Gastrointestinal,
Gynecologic,
Head/Neck,
Lung,
Phase I,
Urologic
I
Berlin, Jordan
NCT05683418
VICC-DTPHI23103
Testing the Use of Ado-Trastuzumab Emtansine Compared to the Usual Treatment (Chemotherapy With Docetaxel Plus Trastuzumab) or Trastuzumab Deruxtecan for Recurrent, Metastatic, or Unresectable HER2-Expressing Salivary Gland Cancers
Head/Neck
Head/Neck
This phase II trial compares the effect of usual treatment of docetaxel chemotherapy plus trastuzumab, to ado-emtansine (T-DM1) in patients with HER2-postive salivary gland cancer that has come back (recurrent), that has spread from where it first started (primary site) to other places in the body, or cannot be removed by surgery (unresectable). This trial is also testing how well trastuzumab deruxtecan works in treating patients with HER2-low recurrent or metastatic salivary gland cancer. Trastuzumab is a form of targeted therapy because it works by attaching itself to specific molecules (receptors) on the surface of cancer cells, known as HER2 receptors. When trastuzumab attaches to HER2 receptors, the signals that tell the cells to grow are blocked and the cancer cell may be marked for destruction by body's immune system. Trastuzumab emtansine contains trastuzumab, linked to a chemotherapy drug called emtansine. Trastuzumab attaches to HER2 positive cancer cells in a targeted way and delivers emtansine to kill them. Trastuzumab deruxtecan is a monoclonal antibody called traztuzumab, linked to a chemotherapy drug called deruxtecan. Trastuzumab is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as HER2 receptors and delivers deruxtecan to kill them. Docetaxel is in a class of medications called taxanes. It stops cancer cells from growing and dividing and may kill them. Trastuzumab emtansine may work better compared to usual treatment of chemotherapy with docetaxel and trastuzumab or trastuzumab deruxtecan in treating patients with recurrent, metastatic or unresectable salivary gland cancer.
Head/Neck
II
Choe, Jennifer
NCT05408845
NRGHN010
Gene Signatures to Guide HR+MBC Therapy in a Diverse Cohort
Breast
Breast
This is an open-label, multicenter, two-arm Phase II clinical trial that will evaluate the impact of 2nd line chemotherapy (i.e. capecitabine) on survival in patients with non-Luminal A hormone receptor-positive (HR+) metastatic breast cancer (MBC)
Breast
II
Reid, Sonya
NCT05693766
VICCBRE2256
A Study of Bleximenib, Venetoclax and Azacitidine For Treatment of Participants With Newly Diagnosed Acute Myeloid Leukemia (AML)
Leukemia
Leukemia
The purpose of this study is to assess how bleximenib and Venetoclax (VEN)+ Azacitidine (AZA) works as compared to placebo and VEN+AZA alone for the treatment of participants with newly diagnosed Acute Myeloid Leukemia (AML) with a mutation in the NPM1 or KMT2A gene.
Leukemia
III
Fedorov, Kateryna
NCT06852222
VICCHEM25012