Clinical Trials Search at Vanderbilt-Ingram Cancer Center
Neuroblastoma Maintenance Therapy Trial
Multiple Cancer Types
Difluoromethylornithine (DFMO) will be used in an open label, single agent, multicenter, study for patients with neuroblastoma in remission. In this study subjects will receive 730 Days of oral difluoromethylornithine (DFMO) at a dose of 750 mg/m2 250 mg/m2 BID (strata 1, 2, 3, and 4) OR 2500 mg/m2 BID (stratum 1B) on each day of study. This study will focus on the use of DFMO in high risk neuroblastoma patients that are in remission as a strategy to prevent recurrence.
Endocrine,
Neuroblastoma (Pediatrics),
Neuroendocrine,
Pediatrics
II
Pastakia, Devang
NCT02679144
VICCPED16157
Surgical Debulking Prior to Peptide Receptor Radionuclide Therapy in Well Differentiated Gastroenteropancreatic Neuroendocrine Tumors
Multiple Cancer Types
This phase IV trial evaluates how well giving standard of care (SOC) peptide receptor radionuclide therapy (PRRT) after SOC surgical removal of as much tumor as possible (debulking surgery) works in treating patients with grade 1 or 2, somatostatin receptor (SSTR) positive, gastroenteropancreatic neuroendocrine tumors (GEP-NETs) that have spread from where they first started (primary site) to the liver (hepatic metastasis). Lutetium Lu 177 dotatate is a radioactive drug that uses targeted radiation to kill tumor cells. Lutetium Lu 177 dotatate includes a radioactive form (an isotope) of the element called lutetium. This radioactive isotope (Lu-177) is attached to a molecule called dotatate. On the surface of GEP-NET tumor cells, a receptor called a somatostatin receptor binds to dotatate. When this binding occurs, the lutetium Lu 177 dotatate drug then enters somatostatin receptor-positive tumor cells, and radiation emitted by Lu-177 helps kill the cells. Giving lutetium Lu 177 dotatate after surgical debulking may better treat patients with grade 1/2 GEP-NETs
Colon,
Esophageal,
Gastric/Gastroesophageal,
Gastrointestinal,
Liver,
Pancreatic,
Rectal
N/A
Idrees, Kamran
NCT06016855
VICCGI2283
Genetic Testing to Select Therapy for the Treatment of Advanced or Metastatic Kidney Cancer, OPTIC RCC Study
Kidney (Renal Cell)
Kidney (Renal Cell)
This phase II trial tests whether using genetic testing of tumor tissue to select the optimal treatment regimen works in treating patients with clear cell renal cell (kidney) cancer that has spread to other places in the body (advanced or metastatic). The current Food and Drug Administration (FDA)-approved regimens for advanced kidney cancer fall into two categories. One treatment combination includes two immunotherapy drugs (nivolumab plus ipilimumab), which are delivered by separate intravenous infusions into a vein. The other combination is one immunotherapy drug (nivolumab infusion) plus an oral pill taken by mouth (cabozantinib). Nivolumab and ipilimumab are "immunotherapies" which release the brakes of the immune system, thus allowing the patient's own immune system to better kill cancer cells. Cabozantinib is a "targeted therapy" specifically designed to block certain biological mechanisms needed for growth of cancer cells. In kidney cancer, cabozantinib blocks a tumor's blood supply. The genetic (DNA) makeup of the tumor may affect how well it responds to therapy. Testing the makeup (genes) of the tumor, may help match a treatment (from one of the above two treatment options) to the specific cancer and increase the chance that the disease will respond to treatment. The purpose of this study is to learn if genetic testing of tumor tissue may help doctors select the optimal treatment regimen to which advanced kidney cancer is more likely to respond.
Kidney (Renal Cell)
II
Rini, Brian
NCT05361720
VICCURO21103
N-803 and PD-L1 t-haNK Combined With Bevacizumab for Recurrent or Progressive Glioblastoma
This study consists of 2 portions. The phase 2 portion is an open-label, single-arm study to evaluate the safety and efficacy of NAI, PD-L1 t-haNK, and bevacizumab combination therapy in participants with recurrent or progressive GBM. The phase 2B portion is an open-label, randomized study to evaluate the efficacy and safety for the following 2 experimental arms in participants with recurrent or progressive GBM: NAI, bevacizumab, and TTFields combination therapy (Arm A) or NAI, PD-L1 t-haNK, bevacizumab, and TTFields combination therapy (Arm B).
Phase 2 Treatment for all enrolled participants will consist of repeated cycles of 28 days for a maximum treatment period of 76 weeks (19 cycles) as follows: Every 2 weeks (Days 1 and 15 of a 28-day cycle)
Fourteen (14) participants were enrolled in the phase 2 portion of this study as of the date of this v02 protocol. No additional participants will be administered therapy in phase 2.
Phase 2B Participants will be randomized 1:1 to 1 of 2 experimental arms (Arm A or Arm B). Treatment for all enrolled participants will consist of repeated 8-week cycles for a maximum treatment period of up to 80 weeks (10 cycles). Experimental Arm (A): Every 2 weeks (Days 1, 15, 29, and 43 of an 8-week cycle)
Up to twenty (20) participants will be randomized in phase 2B (up to 10 participants/arm.
Duration of Treatment:
Participants will receive study treatment for up to 76 weeks during phase 2 (up to 19 repeated 28-day cycles) and for up to 80 weeks (up to 10 repeated 8-week cycles) during phase 2B or until they report unacceptable toxicity (not corrected with dose reduction), withdraw consent, or if the Investigator feels it is no longer in the participant's best interest to continue treatment. Treatment may also be discontinued if the participant has confirmed PD per iRANO, unless the participant is clinically stable and is considered potentially deriving benefit per Investigator's assessment.
Duration of Follow-up:
Participants who discontinue study treatment should remain in the study for follow-up. Participants should be followed for collection of survival status, posttreatment therapies (phase 2 and phase 2B), and medical history (phase 2B only) every 12 weeks ( 2 weeks) for the first 2 years then yearly thereafter for an additional 3 years. The maximum duration of follow-up is 5 years (260 weeks).
Phase 2 Treatment for all enrolled participants will consist of repeated cycles of 28 days for a maximum treatment period of 76 weeks (19 cycles) as follows: Every 2 weeks (Days 1 and 15 of a 28-day cycle)
Fourteen (14) participants were enrolled in the phase 2 portion of this study as of the date of this v02 protocol. No additional participants will be administered therapy in phase 2.
Phase 2B Participants will be randomized 1:1 to 1 of 2 experimental arms (Arm A or Arm B). Treatment for all enrolled participants will consist of repeated 8-week cycles for a maximum treatment period of up to 80 weeks (10 cycles). Experimental Arm (A): Every 2 weeks (Days 1, 15, 29, and 43 of an 8-week cycle)
Up to twenty (20) participants will be randomized in phase 2B (up to 10 participants/arm.
Duration of Treatment:
Participants will receive study treatment for up to 76 weeks during phase 2 (up to 19 repeated 28-day cycles) and for up to 80 weeks (up to 10 repeated 8-week cycles) during phase 2B or until they report unacceptable toxicity (not corrected with dose reduction), withdraw consent, or if the Investigator feels it is no longer in the participant's best interest to continue treatment. Treatment may also be discontinued if the participant has confirmed PD per iRANO, unless the participant is clinically stable and is considered potentially deriving benefit per Investigator's assessment.
Duration of Follow-up:
Participants who discontinue study treatment should remain in the study for follow-up. Participants should be followed for collection of survival status, posttreatment therapies (phase 2 and phase 2B), and medical history (phase 2B only) every 12 weeks ( 2 weeks) for the first 2 years then yearly thereafter for an additional 3 years. The maximum duration of follow-up is 5 years (260 weeks).
Not Available
II
Merrell, Ryan
NCT06061809
VICC-DTNEU24006
Outpatient Administration of Teclistamab or Talquetamab for Multiple Myeloma
Multiple Myeloma
Multiple Myeloma
This is a phase II study to evaluate the outpatient administration of Teclistamab or Talquetamab in Multiple Myeloma patients
Multiple Myeloma
II
Baljevic, Muhamed
NCT05972135
VICCPCL24566
Testing the Addition of 131I-MIBG or Lorlatinib to Intensive Therapy in People With High-Risk Neuroblastoma (NBL)
This phase III trial studies iobenguane I-131 or lorlatinib and standard therapy in treating younger patients with newly-diagnosed high-risk neuroblastoma or ganglioneuroblastoma. Radioactive drugs, such as iobenguane I-131, may carry radiation directly to tumor cells and not harm normal cells. Lorlatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving iobenguane I-131 or lorlatinib and standard therapy may work better compared to lorlatinib and standard therapy alone in treating younger patients with neuroblastoma or ganglioneuroblastoma.
Not Available
III
Not Available
NCT03126916
COGANBL1531
Testing the Role of DNA Released From Tumor Cells Into the Blood in Guiding the Use of Immunotherapy After Surgical Removal of the Bladder, Kidney, Ureter, and Urethra for Urothelial Cancer Treatment, MODERN Study
This phase II/III trial examines whether patients who have undergone surgical removal of bladder, kidney, ureter or urethra, but require an additional treatment called immunotherapy to help prevent their urinary tract (urothelial) cancer from coming back, can be identified by a blood test. Many types of tumors tend to lose cells or release different types of cellular products including their DNA which is referred to as circulating tumor DNA (ctDNA) into the bloodstream before changes can be seen on scans. Health care providers can measure the level of ctDNA in blood or other bodily fluids to determine which patients are at higher risk for disease progression or relapse. In this study, a blood test is used to measure ctDNA and see if there is still cancer somewhere in the body after surgery and if giving a treatment will help eliminate the cancer. Immunotherapy with monoclonal antibodies, such as nivolumab and relatlimab, can help the body's immune system to attack the cancer, and can interfere with the ability of tumor cells to grow and spread. This trial may help doctors determine if ctDNA measurement in blood can better identify patients that need additional treatment, if treatment with nivolumab prolongs patients' life and whether the additional immunotherapy treatment with relatlimab extends time without disease progression or prolongs life of urothelial cancer patients who have undergone surgical removal of their bladder, kidney, ureter or urethra.
Not Available
II/III
Schaffer, Kerry
NCT05987241
ALLUROA032103
A Study of the Drug Letermovir as Prevention of Cytomegalovirus Infection After Stem Cell Transplant in Pediatric Patients
Pediatrics
Pediatrics
This phase III single arm trial determines whether taking prophylactic letermovir will reduce the likelihood of infection with cytomegalovirus (CMV) in children and adolescents after stem cell transplant compared to estimated rate of infection without prophylaxis. The treatments used to prepare for HCT reduce the body's natural infection-fighting ability and increase the likelihood of an infection with a virus called cytomegalovirus. "Prophylaxis" means to take a drug to prevent a disease or side effect. Letermovir is an antiviral drug that stops cytomegalovirus from multiplying and may prevent cytomegalovirus infection and make the disease less severe.
Pediatrics
III
Kitko, Carrie
NCT05711667
VICC-NTPED24132
Accelerated v's Standard BEP Chemotherapy for Patients With Intermediate and Poor-risk Metastatic Germ Cell Tumours
Germ Cell (Pediatrics)
Germ Cell (Pediatrics)
The purpose of this study is to determine whether accelerated BEP chemotherapy is more effective than standard BEP chemotherapy in males with intermediate and poor-risk metastatic germ cell tumours.
Germ Cell (Pediatrics)
III
Borinstein, Scott
NCT02582697
COGAGCT1532
Study of Navtemadlin add-on to Ruxolitinib in JAK Inhibitor-Nave Patients With Myelofibrosis Who Have a Suboptimal Response to Ruxolitinib
Hematologic
Hematologic
This clinical trial is evaluating whether addition of navtemadlin to ruxolitinib treatment will provide more clinical benefit than ruxolitinib alone for patients with Myelofibrosis who have a suboptimal response to ruxolitinib treatment alone.
Subjects will start by receiving ruxolitinib alone in the run-in period. Those who demostrate a suboptimal response from ruxolitinib alone will then be randomized 2:1 to receive navtemadlin or navtemadlin placebo as add-on treatment to their ongoing ruxolitinib. Randomized means that subjects will be assigned to a group by chance, like a flip of a coin. The study is blinded, meaning the subjects, doctors, central endpoint assessors and sponsor will not know which add on treatment (navtemadlin or navtemadlin placebo) the subject is receiving.
Subjects will start by receiving ruxolitinib alone in the run-in period. Those who demostrate a suboptimal response from ruxolitinib alone will then be randomized 2:1 to receive navtemadlin or navtemadlin placebo as add-on treatment to their ongoing ruxolitinib. Randomized means that subjects will be assigned to a group by chance, like a flip of a coin. The study is blinded, meaning the subjects, doctors, central endpoint assessors and sponsor will not know which add on treatment (navtemadlin or navtemadlin placebo) the subject is receiving.
Hematologic
III
Mohan, Sanjay
NCT06479135
VICC-DTHEM24136