Clinical Trials Search at Vanderbilt-Ingram Cancer Center
Surgical Debulking Prior to Peptide Receptor Radionuclide Therapy in Patients with Well Differentiated Gastroenteropancreatic Neuroendocrine Tumors
Multiple Cancer Types
This phase IV trial evaluates how well giving standard of care (SOC) peptide receptor radionuclide therapy (PRRT) after SOC surgical removal of as much tumor as possible (debulking surgery) works in treating patients with grade 1 or 2, somatostatin receptor (SSTR) positive, gastroenteropancreatic neuroendocrine tumors (GEP-NETs) that have spread from where they first started (primary site) to the liver (hepatic metastasis). Lutetium Lu 177 dotatate is a radioactive drug that uses targeted radiation to kill tumor cells. Lutetium Lu 177 dotatate includes a radioactive form (an isotope) of the element called lutetium. This radioactive isotope (Lu-177) is attached to a molecule called dotatate. On the surface of GEP-NET tumor cells, a receptor called a somatostatin receptor binds to dotatate. When this binding occurs, the lutetium Lu 177 dotatate drug then enters somatostatin receptor-positive tumor cells, and radiation emitted by Lu-177 helps kill the cells. Giving lutetium Lu 177 dotatate after surgical debulking may better treat patients with grade 1/2 GEP-NETs.
Colon,
Esophageal,
Gastric/Gastroesophageal,
Gastrointestinal,
Liver,
Pancreatic,
Rectal
N/A
Idrees, Kamran
NCT06016855
VICCGI2283
Sacituzumab Govitecan and Atezolizumab for the Prevention of Triple Negative Breast Cancer Recurrence
Breast
Breast
This phase II trial investigates how well sacituzumab govitecan and atezolizumab work in preventing triple negative breast cancer from coming back (recurrence). Atezolizumab is a protein that affects the immune system by blocking the PD-L1 pathway. The PD-L1 pathway controls the bodys natural immune response, but for some types of cancer the immune system does not work as it should and is prevented from attacking tumors. Atezolizumab works by blocking the PD-L1 pathway, which may help the immune system identify and catch tumor cells. Sacituzumab govitecan is a monoclonal antibody, called sacituzumab, linked to a chemotherapy drug, called SN-38. Sacituzumab is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as TROP2 receptors, and delivers SN-38 to kill them. Giving sacituzumab govitecan and atezolizumab may work as a treatment for residual cancer in the breast or lymph nodes.
Breast
II
Abramson, Vandana
NCT04434040
VICCBRE2056
A Study to Compare Treatment with the Drug Selumetinib Alone versus Selumetinib and Vinblastine in Patients with Recurrent or Progressive Low-Grade Glioma
This phase III trial investigates the best dose of vinblastine in combination with selumetinib and the benefit of adding vinblastine to selumetinib compared to selumetinib alone in treating children and young adults with low-grade glioma (a common type of brain cancer) that has come back after prior treatment (recurrent) or does not respond to therapy (progressive). Selumetinib is a drug that works by blocking a protein that lets tumor cells grow without stopping. Vinblastine blocks cell growth by stopping cell division and may kill cancer cells. Giving selumetinib in combination with vinblastine may work better than selumetinib alone in treating recurrent or progressive low-grade glioma.
Not Available
III
Esbenshade, Adam
NCT04576117
COGACNS1931
Inotuzumab Ozogamicin in Treating Younger Patients with B-Lymphoblastic Lymphoma or Relapsed or Refractory CD22 Positive B Acute Lymphoblastic Leukemia
This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
Not Available
II
Not Available
NCT02981628
COGAALL1621
A Randomized, Placebo-Controlled, Double-Blind, Multicenter, Phase 3 Trial of Quemliclustat and Chemotherapy Versus Placebo and Chemotherapy in Patients With Treatment-Naive Metastatic Pancreatic Ductal Adenocarcinoma
Not Available
III
Cardin, Dana
NCT06608927
VICC-DTGIT24162
A Phase 1, Open-Label, Multicenter Study of INCB160058 in Participants With Myeloproliferative Neoplasms
Not Available
I
Kishtagari, Ashwin
NCT06313593
VICC-DTHEM24055P
Phase Ib Study of Eltanexor and Venetoclax in Relapsed or Refractory Myelodysplastic Syndrome and Acute Myeloid Leukemia
Multiple Cancer Types
Leukemia,
Myelodysplastic Syndrome,
Phase I
I
Ball, Somedeb
NCT06399640
VICC-VCHEM23008P
A Phase 3 Open-Label, Randomized, Controlled Study to Evaluate the Efficacy and Safety of Petosemtamab Compared with Investigator's Choice Monotherapy Treatment in Previously Treated Patients with Incurable, Metastatic/Recurrent Head and Neck Squamous Cell Carcinoma
Head/Neck
Head/Neck
Head/Neck
III
Choe, Jennifer
NCT06496178
VICC-DTHAN23576
An Open Label, Expanded Access Protocol using 131I-Metaiodobenzylguanidine (131I-MIBG) Therapy in Patients with Refractory Neuroblastoma, Pheochromocytoma, or Paraganglioma
Multiple Cancer Types
Neuroblastoma (Pediatrics),
Pediatric Solid Tumors
N/A
Kitko, Carrie
NCT01590680
VICCPED1249
Intermediate-Size Population Expanded Access Program (EAP) for Ciltacabtagene Autoleucel (Cilta-Cel) Out-of-Specification (OOS) in Patients with Multiple Myeloma
Multiple Myeloma
Multiple Myeloma
Multiple Myeloma
N/A
Oluwole, Olalekan
NCT05346835
VICC-XDCTT24033