Clinical Trials Search at Vanderbilt-Ingram Cancer Center
Atezolizumab + Sacituzumab Govitecan to Prevent Recurrence in TNBC (ASPRIA)
Breast
Breast
The purpose of this study is to determine if a combination of two drugs sacituzumab govitecan and atezolizumab works as a treatment for residual cancer in the breast or lymph nodes and have circulating tumor DNA in the blood.
This research study involves the following investigational drugs:
* Sacituzumab govitecan
* Atezolizumab
This research study involves the following investigational drugs:
* Sacituzumab govitecan
* Atezolizumab
Breast
II
Abramson, Vandana
NCT04434040
VICCBRE2056
Canakinumab for the Prevention of Progression to Cancer in Patients With Clonal Cytopenias of Unknown Significance, IMPACT Study
Leukemia
Leukemia
This phase II trial tests how well canakinumab works to prevent progression to cancer in patients with clonal cytopenias of unknown significance (CCUS). CCUS is a blood condition defined by a decrease in blood cells. Blood cells are composed of either red blood cells, white blood cells, or platelets. In patients with CCUS, blood counts have been low for a long period of time. Patients with CCUS also have a mutation in one of the genes that are responsible for helping blood cells develop. The combination of genetic mutations and low blood cell counts puts patients with CCUS at a higher risk to develop blood cancers in the future. This transformation from low blood cell counts to cancer may be caused by inflammation in the body. Canakinumab is a monoclonal antibody that may block inflammation in the body by targeting a specific antibody called the anti-human interleukin-1beta (IL-1beta).
Leukemia
II
Kishtagari, Ashwin
NCT05641831
VICC-ITHEM23019
A Study to Compare Standard Chemotherapy to Therapy With CPX-351 and/or Gilteritinib for Patients With Newly Diagnosed AML With or Without FLT3 Mutations
This phase III trial compares standard chemotherapy to therapy with liposome-encapsulated daunorubicin-cytarabine (CPX-351) and/or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and/or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and/or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3/ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and/or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.
Not Available
III
Not Available
NCT04293562
COGAAML1831
A Study of ASP3082 in Adults With Advanced Solid Tumors
Phase I
Phase I
This is an open-label study. This means that people in this study and clinic staff will know that they will receive ASP3082. The study aims to check how safe and well-tolerated ASP3082 is for people with advanced solid tumors that have a specific mutation called KRAS G12D.
This study will be in 2 parts.
In Part 1, different small groups of people will receive lower to higher doses of ASP3082 by itself, or together with cetuximab. Any medical problems will be recorded at each dose. This is done to find suitable doses of ASP3082, by itself or together with cetuximab, to use in Part 2 of the study. The first group will receive the lowest dose of ASP3082. A medical expert panel will check the results from this group and decide if the next group can receive a higher dose of ASP3082. The panel will do this for each group until all groups have received ASP3082 (by itself or together with cetuximab) or until suitable doses have been selected for Part 2.
In Part 2, ASP3082 will be given in by itself, or in combination with the other study treatments.
Study treatments will be given through a vein. This is called an infusion. Each treatment cycle is 21 or 28 days long. They will continue treatment until: they have medical problems from the treatment they can't tolerate; their cancer gets worse; they start other cancer treatment; or they ask to stop treatment.
This study will be in 2 parts.
In Part 1, different small groups of people will receive lower to higher doses of ASP3082 by itself, or together with cetuximab. Any medical problems will be recorded at each dose. This is done to find suitable doses of ASP3082, by itself or together with cetuximab, to use in Part 2 of the study. The first group will receive the lowest dose of ASP3082. A medical expert panel will check the results from this group and decide if the next group can receive a higher dose of ASP3082. The panel will do this for each group until all groups have received ASP3082 (by itself or together with cetuximab) or until suitable doses have been selected for Part 2.
In Part 2, ASP3082 will be given in by itself, or in combination with the other study treatments.
Study treatments will be given through a vein. This is called an infusion. Each treatment cycle is 21 or 28 days long. They will continue treatment until: they have medical problems from the treatment they can't tolerate; their cancer gets worse; they start other cancer treatment; or they ask to stop treatment.
Phase I
I
Berlin, Jordan
NCT05382559
VICCPHI2207
Outpatient Administration of Teclistamab or Talquetamab for Multiple Myeloma
Multiple Myeloma
Multiple Myeloma
This is a phase II study to evaluate the outpatient administration of Teclistamab or Talquetamab in Multiple Myeloma patients
Multiple Myeloma
II
Baljevic, Muhamed
NCT05972135
VICCPCL24566
DCIS: RECAST Trial Ductal Carcinoma In Situ: Re-Evaluating Conditions for Active Surveillance Suitability as Treatment
Breast
Breast
The goal of this trial is to see if active surveillance monitoring and hormonal therapy in patients diagnosed with ductal cell carcinoma in situ (DCIS), an early stage of breast cancer, can be an effective management of the disease.
Participants will be asked to receive control hormonal therapy or an investigational hormonal therapy treatment. Participants will be asked to return for evaluation with MRI at three months and six months. Depending on the evaluation participants will have the option to continue on the treatment. If the evaluation suggests surgery is recommended, the participant will discontinue the study treatment and will undergo surgery. In addition to the treatment and MRI evaluation, participants will be asked to provide blood sample to understand their immune status, provide saliva sample for genetic testing, provide the study with a portion of the tissue or slides generated from tissue removed during surgery performed as part of their standard of care.
Participants will be asked to receive control hormonal therapy or an investigational hormonal therapy treatment. Participants will be asked to return for evaluation with MRI at three months and six months. Depending on the evaluation participants will have the option to continue on the treatment. If the evaluation suggests surgery is recommended, the participant will discontinue the study treatment and will undergo surgery. In addition to the treatment and MRI evaluation, participants will be asked to provide blood sample to understand their immune status, provide saliva sample for genetic testing, provide the study with a portion of the tissue or slides generated from tissue removed during surgery performed as part of their standard of care.
Breast
II
Meszoely, Ingrid
NCT06075953
VICC-DTBRE23082
An Open-label Study Comparing Lutetium (177Lu) Vipivotide Tetraxetan Versus Observation in PSMA Positive OMPC.
The purpose of this study is to evaluate the efficacy and safety of lutetium (177Lu) vipivotide tetraxetan (AAA617) in participants with oligometastatic prostate cancer (OMPC) progressing after definitive therapy to their primary tumor. The data generated from this study will provide evidence for the treatment of AAA617 in early-stage prostate cancer patients to control recurrent tumor from progressing to fatal metastatic disease while preserving quality of life by delaying treatment with androgen deprivation therapy (ADT).
Not Available
III
Schaffer, Kerry
NCT05939414
VICC-DTURO23342
Study of Safety and Tolerability of BCA101 Monotherapy and in Combination Therapy in Patients With EGFR-driven Advanced Solid Tumors
Phase I
Phase I
The investigational drug to be studied in this protocol, BCA101, is a first-in-class compound that targets both EGFR with TGF. Based on preclinical data, this bifunctional antibody may exert synergistic activity in patients with EGFR-driven tumors.
Phase I
I
Choe, Jennifer
NCT04429542
VICCPHI2254
MOONRAY-01, A Study of LY3962673 in Participants With KRAS G12D-Mutant Solid Tumors
Multiple Cancer Types
The main purpose of this study is to assess safety \& tolerability and antitumor activity of LY3962673 as monotherapy and in combination with other chemotherapy agents in participants with KRAS G12D-mutant advanced solid tumor types. The study is expected to last approximately 5 years.
Colon,
Esophageal,
Gastric/Gastroesophageal,
Gastrointestinal,
Lung,
Non Small Cell,
Pancreatic,
Phase I,
Rectal,
Uterine
I
Cardin, Dana
NCT06586515
VICC-DTGIT24002P
Evexomostat Plus PI3K or AKT Inhibitor and Fulvestrant in Patients With a PI3K Alteration and HR+/Her2- Breast Cancer
This is a Phase 1b/2, open-label, parallel-arms pilot study in men and post-menopausal women with hormone receptor positive (HR+), HER2- advanced or metastatic breast cancer with an alteration in the PI3K pathway, including a mutation of the PIK3CA gene, PTEN loss, or AKT1 mutation, designed to determine the safety of evexomostat (SDX-7320) plus standard of care treatment alpelisib (BYL-719) or capivasertib and fulvestrant (each combined, the 'triplet therapy'), to measure the severity and number of hyperglycemic events, and to assess clinical, anti-tumor benefit of the triplet therapy.
The purpose of this study is:
* to characterize the safety of the triplet drug combination consisting of either alpelisib or capivasertib (per the treating oncologist's choice) and fulvestrant plus evexomostat,
* to test whether evexomostat, when given in combination with either alpelisib or capivasertib and fulvestrant will reduce the number and severity of hyperglycemic events and/or reduce the number or dose of anti-diabetic medications needed to control the hyperglycemia for metabolically normal patients and those deemed at risk for capivasertib and alpelisib-induced hyperglycemia (insulin resistance, as measured by HOMA-IR, baseline elevated HbA1c or well-controlled type 2 diabetes), and
* to assess preliminary anti-tumor efficacy for each combination and changes in key biomarkers and quality of life in this patient population.
The purpose of this study is:
* to characterize the safety of the triplet drug combination consisting of either alpelisib or capivasertib (per the treating oncologist's choice) and fulvestrant plus evexomostat,
* to test whether evexomostat, when given in combination with either alpelisib or capivasertib and fulvestrant will reduce the number and severity of hyperglycemic events and/or reduce the number or dose of anti-diabetic medications needed to control the hyperglycemia for metabolically normal patients and those deemed at risk for capivasertib and alpelisib-induced hyperglycemia (insulin resistance, as measured by HOMA-IR, baseline elevated HbA1c or well-controlled type 2 diabetes), and
* to assess preliminary anti-tumor efficacy for each combination and changes in key biomarkers and quality of life in this patient population.
Not Available
I/II
Rexer, Brent
NCT05455619
VICCBREP2271