Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center


New dean of Basic Sciences aims to take Vanderbilt to the next level in biomedical research, drug discovery

Submitted by sobecksm on
Whether working on dynamic discoveries in the lab, connecting with students and faculty or pursuing his passion for nature photography, acclaimed biomedical researcher John Kuriyan is inspired by his recent move to join Vanderbilt as the new dean of the School of Medicine Basic Sciences and Distinguished University Professor.
https://news.vanderbilt.edu/2023/04/03/new-dean-of-basic-sciences-aims-to-take-vanderbilt-to-the-next-level-in-biomedical-research-drug-discovery/
Amy Wolf
Locked

Vulnerability found in immunotherapy-resistant triple-negative breast cancer

Submitted by robbikm2 on

Vanderbilt researchers have discovered a druggable target on natural killer cells that could potentially trigger a therapeutic response in patients with immunotherapy-resistant, triple-negative breast cancer.

https://news.vumc.org/2023/10/04/vulnerability-found-in-immunotherapy-resistant-triple-negative-breast-cancer/
Tom Wilemon
Locked


Neoadjuvant Neratinib in Stage I-III HER2-Mutated Lobular Breast Cancers

This phase II trial tests how well neratinib prior to the primary treatment (neoadjuvant) works in treating patients with stage I-III HER2 mutated lobular breast cancers. Neratinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of cancer cells. Giving neratinib in addition to normal therapy may work better in treating cancer than the endocrine therapy patients would normally receive.
Not Available
II
Not Available
NCT05919108
VICC-NCBRE23172

Biomarker Platform (Virtual Nodule Clinic) for the Management of Indeterminate Pulmonary Nodules

Lung

This clinical trial studies whether a biomarker platform, the Virtual Nodule Clinic, can be used for the management of lung (pulmonary) nodules that are not clearly non-cancerous (benign) or clearly cancerous (malignant) (indeterminate pulmonary nodules \[IPNs\]). The management of IPNs is based on estimating the likelihood that the observed nodule is malignant. Many things, such as age, smoking history, and current symptoms, are considered when making a prediction of the likelihood of malignancy. Radiographic imaging characteristics are also considered. Lung nodule management for IPNs can result in unnecessary invasive procedures for nodules that are ultimately determined to be benign, or potential delays in treatment when results of tests cannot be determined or are falsely negative. The Virtual Nodule Clinic is an artificial intelligence (AI) based imaging software within the electronic health record which makes certain that identified pulmonary nodules are screened by clinicians with expertise in nodule management. The Virtual Nodule Clinic also features an AI based radiomic prediction score which designates the likelihood that a pulmonary nodule is malignant. This may improve the ability to manage IPNs and lower unnecessary invasive procedures or treatment delays. Using the Virtual Nodule Clinic may work better for the management of IPNs.
Lung
N/A
Maldonado, Fabien
NCT06638398
VICC-IDTHO24059

Enhanced Recovery After Surgery in Extremity Sarcoma

Sarcoma

The purpose of this study is to demonstrate the efficacy of implementing the enhanced recovery after surgery (ERAS) pathway in a prospective manner to patients undergoing surgical treatment for extremity sarcoma.
Sarcoma
N/A
Lawrenz, Joshua
NCT04461171
VICCSAR2020

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.