Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Safety and Preliminary Anti-Tumor Activity of TYRA-300 in Advanced Urothelial Carcinoma and Other Solid Tumors With FGFR3 Gene Alterations

The purpose of this study is to evaluate the safety, tolerability, pharmacokinetics (PK), and
preliminary antitumor activity of TYRA-300 in cancers with FGFR3 activating gene alterations,
including locally advanced/metastatic urothelial carcinoma of the bladder and urinary tract
and other advanced solid tumors.
Not Available
I/II
Berlin, Jordan
NCT05544552
VICCPHI2261

Safety and Efficacy of ALLO-501A Anti-CD19 Allogeneic CAR T Cells in Adults With Relapsed/Refractory Large B Cell Lymphoma (ALPHA2)

The purpose of the ALPHA-2 study is to assess the safety, efficacy, and cell kinetics of
ALLO-501A in adults with relapsed or refractory large B-cell lymphoma after a lymphodepletion
regimen comprising fludarabine, cyclophosphamide, and ALLO-647
Not Available
II
Jallouk, Andrew
NCT04416984
VICC-DTCTT24008

Testing the Combination of New Anti-cancer Drug Peposertib with Avelumab and Radiation Therapy for Advanced/Metastatic Solid Tumors and Hepatobiliary Malignancies

This phase I/II trial studies the best dose and side effects of peposertib and to see how well it works with avelumab and hypofractionated radiation therapy in treating patients with solid tumors and hepatobiliary malignancies that have spread to other places in the body (advanced/metastatic). Peposertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as avelumab, may help the bodys immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving peposertib in combination with avelumab and hypofractionated radiation therapy may work better than other standard chemotherapy, hormonal, targeted, or immunotherapy medicines available in treating patients with solid tumors and hepatobiliary malignancies.
Not Available
I/II
Heumann, Thatcher
NCT04068194
VICC-NTGIT24020

A Study of BMS-986340 as Monotherapy and in Combination With Nivolumab or Docetaxel in Participants With Advanced Solid Tumors

The purpose of this study is to assess the safety, tolerability, and recommended dose(s) of
BMS-986340 as monotherapy and in combination with nivolumab or docetaxel in participants with
advanced solid tumors. This study is a first-in-human (FIH) study of BMS-986340 in
participants with advanced solid tumors.
Not Available
I/II
Berlin, Jordan
NCT04895709
VICC-DTPHI23183

Evaluation of EBUS-TBNA versus EBUS-TBNA plus Transbronchial Mediastinal Cryobiopsy to Obtain Adequate Tissue Samples for Next Generation Sequencing, META-Gen Trial

This phase III trial compares how well endobronchial ultrasound-transbronchial needle aspiration (EBUS-TBNA) versus EBUS-TBNA plus transbronchial mediastinal cryobiopsy works to obtain adequate tissue samples for next generation sequencing (NGS). During usual care, if there is suspicion of cancer, a procedures known as an EBUS-TBNA is done to take sample of lymph nodes to evaluate for cancer spread. If there is suspected cancer in the lymph nodes, multiple samples are taken for molecular testing (NGS) to help guide treatment decisions. It requires a certain amount of tissue to send for the molecular testing which can be achieved with EBUS-TBNA about 70% of the time. Researchers want to find out if adding a biopsy tool currently used in usual care, known as a cryoprobe, can acquire more tissue for molecular analysis. The cryoprobe uses a freezing technique to biopsy and can potentially gather larger and higher quality tissue samples than the standard EBUS-TBNA method.
Not Available
III
Maldonado, Fabien
NCT06105801
VICC-VDTHO23177

Targeted Therapy Directed by Genetic Testing in Treating Patients with Locally Advanced or Advanced Solid Tumors, The ComboMATCH Screening Trial

This ComboMATCH patient screening trial is the gateway to a coordinated set of clinical trials to study cancer treatment directed by genetic testing. Patients with solid tumors that have spread to nearby tissue or lymph nodes (locally advanced) or have spread to other places in the body (advanced) and have progressed on at least one line of standard systemic therapy or have no standard treatment that has been shown to prolong overall survival may be candidates for these trials. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with some genetic changes or abnormalities (mutations) may benefit from treatment that targets that particular genetic mutation. ComboMATCH is designed to match patients to a treatment that may work to control their tumor and may help doctors plan better treatment for patients with locally advanced or advanced solid tumors.
Not Available
II
Choe, Jennifer
NCT05564377
VICC-NTMDT23238

Expanded Access Study for the Treatment of Patients with Commercially Out-of-Specification Brexucabtagene Autoleucel

Not Available
N/A
Jallouk, Andrew
NCT05776134
VICC-XDCTT23451

Promoting Self-Management in Head and Neck Cancer Survivors with Lymphedema and Fibrosis [PROMISE Trial]

Not Available
N/A
Murphy, Barbara
NCT06125743
VICC-EDHAN23569

MRD-Guided Sequential Therapy for Deep Response in Newly Diagnosed Multiple Myeloma - MASTER-2 Trial

Not Available
II
Baljevic, Muhamed
NCT05231629
VICC-ITPCL23014

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.