Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Imatinib Mesylate and Combination Chemotherapy in Treating Patients with Newly Diagnosed Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia

Multiple Cancer Types

This randomized phase III trial studies how well imatinib mesylate and combination chemotherapy work in treating patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia. Imatinib mesylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving imatinib mesylate and combination chemotherapy may work better in treating patients with Philadelphia chromosome positive acute lymphoblastic leukemia.
Pediatric Leukemia, Pediatrics
III
Zarnegar-Lumley, Sara
NCT03007147
COGAALL1631

Cisplatin and Combination Chemotherapy in Treating Children and Young Adults with Hepatoblastoma or Liver Cancer After Surgery

Multiple Cancer Types

This partially randomized phase II / III trial studies how well, in combination with surgery, cisplatin and combination chemotherapy works in treating children and young adults with hepatoblastoma or hepatocellular carcinoma. Drugs used in chemotherapy, such as cisplatin, doxorubicin, fluorouracil, vincristine sulfate, carboplatin, etoposide, irinotecan, sorafenib, gemcitabine and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving combination chemotherapy may kill more tumor cells than one type of chemotherapy alone.
Hepatoblastoma (Pediatrics), Pediatric Solid Tumors, Pediatrics
II/III
Borinstein, Scott
NCT03533582
COGAHEP1531

Reduced Craniospinal Radiation Therapy and Chemotherapy in Treating Younger Patients with Newly Diagnosed WNT-Driven Medulloblastoma

Multiple Cancer Types

This phase II trial studies how well reduced doses of radiation therapy to the brain and spine (craniospinal) and chemotherapy work in treating patients with newly diagnosed type of brain tumor called WNT) / Wingless (WNT)-driven medulloblastoma. Recent studies using chemotherapy and radiation therapy have been shown to be effective in treating patients with WNT-driven medulloblastoma. However, there is a concern about the late side effects of treatment, such as learning difficulties, lower amounts of hormones, or other problems in performing daily activities. Radiotherapy uses high-energy radiation from x-rays to kill cancer cells and shrink tumors. Drugs used in chemotherapy, such as cisplatin, vincristine sulfate, cyclophosphamide and lomustine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving reduced craniospinal radiation therapy and chemotherapy may kill tumor cells and may also reduce the late side effects of treatment.
Neuro-Oncology, Pediatrics
II
Pastakia, Devang
NCT02724579
COGACNS1422

Veliparib, Radiation Therapy, and Temozolomide in Treating Patients with Newly Diagnosed Malignant Glioma without H3 K27M or BRAFV600 Mutations

Multiple Cancer Types

This phase II trial studies how well veliparib, radiation therapy, and temozolomide work in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations. Poly adenosine diphosphate (ADP) ribose polymerases (PARPs) are proteins that help repair DNA mutations. PARP inhibitors, such as veliparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving veliparib, radiation therapy, and temozolomide may work better in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations compared to radiation therapy and temozolomide alone.
Neuro-Oncology, Pediatrics
II
Esbenshade, Adam
NCT03581292
COGACNS1721

Iobenguane I-131 or Crizotinib and Standard Therapy in Treating Younger Patients with Newly-Diagnosed High-Risk Neuroblastoma or Ganglioneuroblastoma

Multiple Cancer Types

This phase III trial studies iobenguane I-131 or crizotinib and standard therapy in treating younger patients with newly-diagnosed high-risk neuroblastoma or ganglioneuroblastoma. Radioactive drugs, such as iobenguane I-131, may carry radiation directly to tumor cells and not harm normal cells. Crizotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving iobenguane I-131 or crizotinib and standard therapy may work better compared to crizotinib and standard therapy alone in treating younger patients with neuroblastoma or ganglioneuroblastoma.
Neuroblastoma (Pediatrics), Pediatrics
III
Benedetti, Daniel
NCT03126916
COGANBL1531

Immunotherapy (Nivolumab or Brentuximab Vedotin) Plus Combination Chemotherapy in Treating Patients with Newly Diagnosed Stage III-IV Classic Hodgkin Lymphoma

Multiple Cancer Types

This randomized phase III trial compares immunotherapy drugs (nivolumab or brentuximab vedotin) when given with combination chemotherapy in treating patients with newly diagnosed stage III or IV classic Hodgkin lymphoma. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Brentuximab vedotin is a monoclonal antibody, brentuximab, linked to a toxic agent called vedotin. Brentuximab attaches to cancer cells in a targeted way and delivers vedotin to kill them. Drugs used in chemotherapy, such as doxorubicin, vinblastine, and dacarbazine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. The addition of nivolumab or brentuximab vedotin to combination chemotherapy may shrink the cancer or extend the time without disease symptoms coming back.
Pediatric Lymphoma, Pediatrics
III
Friedman, Debra
NCT03907488
COGPEDS1826

Erdafitinib in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with FGFR Mutations (A Pediatric MATCH Treatment Trial)

Multiple Cancer Types

This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have spread to other places in the body and have come back or do not respond to treatment with FGFR mutations. Erdafitinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Germ Cell (Pediatrics), Miscellaneous, Neuroblastoma (Pediatrics), Pediatric Lymphoma, Pediatric Solid Tumors, Pediatrics, Wilms / Other Kidney (Pediatrics)
II
Borinstein, Scott
NCT03210714
COGAPEC1621B

PI3K / mTOR Inhibitor LY3023414 in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with TSC or PI3K / MTOR Mutations (A Pediatric MATCH Treatment Trial)

Multiple Cancer Types

This phase II Pediatric MATCH trial studies how well PI3K / mTOR inhibitor LY3023414 works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K / MTOR mutations that have spread to other places in the body (metastatic) and have come back (recurrent) or do not respond to treatment (refractory). PI3K / mTOR inhibitor LY3023414 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Germ Cell (Pediatrics), Miscellaneous, Neuroblastoma (Pediatrics), Pediatric Lymphoma, Pediatric Solid Tumors, Pediatrics, Wilms / Other Kidney (Pediatrics)
II
Borinstein, Scott
NCT03213678
COGAPEC1621D

Dabrafenib Combined with Trametinib after Radiation Therapy in Treating Patients with Newly-Diagnosed High-Grade Glioma

Multiple Cancer Types

This phase II trial studies how well the combination of dabrafenib and trametinib works after radiation therapy in children and young adults with high grade glioma who have a genetic change called BRAF V600 mutation. Radiation therapy uses high energy rays to kill tumor cells and reduce the size of tumors. Dabrafenib and trametinib may stop the growth of tumor cells by blocking BRAF and MEK, respectively, which are enzymes that tumor cells need for their growth. Giving dabrafenib with trametinib after radiation therapy may work better than treatments used in the past in patients with newly-diagnosed BRAF V600-mutant high-grade glioma.
Neuro-Oncology, Pediatrics
II
Pastakia, Devang
NCT03919071
COGACNS1723

Ulixertinib in Treating Patients with Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with MAPK Pathway Mutations (A Pediatric MATCH Treatment Trial)

Multiple Cancer Types

This phase II Pediatric MATCH trial studies how well ulixertinib works in treating patients with solid tumors that have spread to other places in the body (advanced), non-Hodgkin lymphoma, or histiocytic disorders that have a genetic alteration (mutation) in a signaling pathway called MAPK. A signaling pathway consists of a group of molecules in a cell that control one or more cell functions. Genes in the MAPK pathway are frequently mutated in many types of cancers. Ulixertinib may stop the growth of cancer cells that have mutations in the MAPK pathway.
Pediatric Lymphoma, Pediatric Solid Tumors, Pediatrics
II
Borinstein, Scott
NCT03698994
COGAPEC1621J

To learn more about any of our clinical
trials, call 1-800-811-8480 or complete
the online Self-Referral Form here: