Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Split Course Adaptive Radiation Therapy With Pembrolizumab With/Without Chemotherapy for Treating Stage IV Lung Cancer

Multiple Cancer Types

This phase I/II trial tests the safety and efficacy of split-course adaptive radiation therapy in combination with immunotherapy with or without chemotherapy for the treatment of patients with stage IV lung cancer or lung cancer that that has spread to nearby tissue or lymph nodes (locally advanced). Radiation therapy is a standard cancer treatment that uses high energy rays to kill cancer cells and shrink tumors. Split-course adaptive radiation therapy uses patient disease response to alter the intensity of the radiation therapy. Immunotherapy with monoclonal antibodies such as pembrolizumab, ipilimumab, cemiplimab, atezolizumab or nivolumab may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs like carboplatin, pemetrexed, and paclitaxel work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving split-course adaptive radiation therapy with standard treatments like immunotherapy and chemotherapy may be more effective at treating stage IV or locally advanced lung cancer than giving them alone.
Lung, Non Small Cell, Phase I
I/II
Osmundson, Evan
NCT05501665
VICCTHOP2185

A Study of LY4050784 in Participants With Advanced or Metastatic Solid Tumors

Miscellaneous

The main purpose of this study is to find out whether the study drug, LY4050784, is safe, tolerable and effective in participants alone or in combination with other anticancer agents. In addition, with locally advanced or metastatic solid tumors with a BRG1 (Brahma-related gene 1, also known as SMARCA4) alteration who have previously received, do not qualify for, or are refusing standard of care treatments, or there is no standard therapy available for the disease. The study is conducted in two parts - phase Ia (dose-escalation) and phase Ib (dose-optimization, dose-expansion). The study will last up to approximately 4 years.
Miscellaneous
I
Davis, Elizabeth
NCT06561685
VICC-DTPHI24160

Circulating Tumor DNA to Guide Changes in Standard of Care Chemotherapy

Breast

This phase II trial tests how well evaluating circulating tumor deoxyribonucleic acid (ctDNA) works to guide therapy-change decisions in treating patients with triple-negative breast cancer (TNBC) that has spread from where it first started (primary site) to other places in the body (metastatic). This study wants to learn if small pieces of DNA associated with a tumor (called circulating tumor DNA, or ctDNA) can be detected in investigational blood tests during the course of standard chemotherapy treatment for breast cancer, and whether information from such investigational ctDNA blood testing could possibly be used as an early indication of chemotherapy treatment failure. It is hoped that additional information from investigational blood testing for ctDNA could help doctors to switch more quickly from a standard chemotherapy treatment that typically has significant side effects and which may not be working, to a different standard treatment regimen against TNBC, called sacituzumab govitecan. Sacituzumab govitecan is a monoclonal antibody, called hRS7, linked to a chemotherapy drug, called irinotecan. hRS7 is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as TROP2 receptors, and delivers irinotecan to kill them. Studying ctDNA may assist doctors to change therapy earlier if needed, and may improve health outcomes in patients with metastatic TNBC.
Breast
II
Abramson, Vandana
NCT05770531
VICCBRE2257

Phase 1 Study of INBRX-109 in Subjects with Locally Advanced or Metastatic Solid Tumors Including Sarcomas

Multiple Cancer Types

This is a first-in-human, open-label, non-randomized, three-part phase 1 trial of INBRX-109, which is a recombinant humanized tetravalent antibody targeting the human death receptor 5 (DR5).
Miscellaneous, Phase I
I
Davis, Elizabeth
NCT03715933
VICCMDP2287

A Study of Combination Chemotherapy for Patients With Newly Diagnosed DAWT and Relapsed FHWT

Multiple Cancer Types

This phase II trial studies how well combination chemotherapy works in treating patients with newly diagnosed stage II-IV diffuse anaplastic Wilms tumors (DAWT) or favorable histology Wilms tumors (FHWT) that have come back (relapsed). Drugs used in chemotherapy regimens such as UH-3 (vincristine, doxorubicin, cyclophosphamide, carboplatin, etoposide, and irinotecan) and ICE/Cyclo/Topo (ifosfamide, carboplatin, etoposide, cyclophosphamide, and topotecan) work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial may help doctors find out what effects, good and/or bad, regimen UH-3 has on patients with newly diagnosed DAWT and standard risk relapsed FHWT (those treated with only 2 drugs for the initial WT) and regimen ICE/Cyclo/Topo has on patients with high and very high risk relapsed FHWT (those treated with 3 or more drugs for the initial WT).
Pediatrics, Wilms / Other Kidney (Pediatrics)
II
Benedetti, Daniel
NCT04322318
COGAREN1921

A Study of [177Lu]Lu-DOTA-TATE in Newly Diagnosed ES-SCLC Patients in Combination With Carboplatin, Etoposide and Atezolizumab

This study aims to establish a safe and well tolerated dose of \[177Lu\]Lu-DOTA-TATE in combination with carboplatin, etoposide and atezolizumab in this setting and to assess preliminary efficacy of this combination treatment versus the combination of carboplatin, etoposide, and atezolizumab.The study will be essential to assess a new potential therapeutic option in participants with this aggressive cancer type.
Not Available
I/II
Ramirez, Robert
NCT05142696
VICC-DTTHO24168P

Testing What Happens When an Immunotherapy Drug (Pembrolizumab) is Given by Itself Compared to the Usual Treatment of Chemotherapy With Radiation After Surgery for Recurrent Head and Neck Squamous Cell Carcinoma

Head/Neck

This phase II trial studies the effect of pembrolizumab alone compared to the usual approach (chemotherapy \[cisplatin and carboplatin\] plus radiation therapy) after surgery in treating patients with head and neck squamous cell carcinoma that has come back (recurrent) or patients with a second head and neck cancer that is not from metastasis (primary). Radiation therapy uses high energy radiation or protons to kill tumor cells and shrink tumors. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of cancer cells. Carboplatin is also in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of cancer cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab alone after surgery may work better than the usual approach in shrinking recurrent or primary head and neck squamous cell carcinoma.
Head/Neck
II
Choe, Jennifer
NCT04671667
ECOGHNEA3191

A Study of ASP3082 in Adults With Advanced Solid Tumors

Phase I

This is an open-label study. This means that people in this study and clinic staff will know that they will receive ASP3082. The study aims to check how safe and well-tolerated ASP3082 is for people with advanced solid tumors that have a specific mutation called KRAS G12D.

This study will be in 2 parts.

In Part 1, different small groups of people will receive lower to higher doses of ASP3082 by itself, or together with cetuximab. Any medical problems will be recorded at each dose. This is done to find suitable doses of ASP3082, by itself or together with cetuximab, to use in Part 2 of the study. The first group will receive the lowest dose of ASP3082. A medical expert panel will check the results from this group and decide if the next group can receive a higher dose of ASP3082. The panel will do this for each group until all groups have received ASP3082 (by itself or together with cetuximab) or until suitable doses have been selected for Part 2.

In Part 2, ASP3082 will be given in by itself, or in combination with the other study treatments.

Study treatments will be given through a vein. This is called an infusion. Each treatment cycle is 21 or 28 days long. They will continue treatment until: they have medical problems from the treatment they can't tolerate; their cancer gets worse; they start other cancer treatment; or they ask to stop treatment.
Phase I
I
Berlin, Jordan
NCT05382559
VICCPHI2207

A Study Evaluating the Efficacy and Safety of Multiple Treatment Combinations in Patients With Metastatic or Locally Advanced Breast Cancer

Multiple Cancer Types

This is an umbrella study evaluating the efficacy and safety of multiple treatment combinations in participants with metastatic or inoperable locally advanced breast cancer.

The study will be performed in two stages. During Stage 1, six cohorts will be enrolled in parallel in this study:

Cohort 1 will consist of programmed death-ligand 1 (PD-L1)-positive participants who have received no prior systemic therapy for metastatic or inoperable locally advanced triple-negative breast cancer (TNBC) (first-line \[1L\] PD-L1+ cohort).

Cohort 2 will consist of participants who had disease progression during or following 1L treatment with chemotherapy for metastatic or inoperable locally-advanced TNBC and have not received cancer immunotherapy (CIT) (second-line \[2L\] CIT-nave cohort).

Cohort 3, 5, and 6 will consist of participants with locally advanced or metastatic hormone receptor-positive (HR+), human epidermal growth factor receptor 2 (HER2)-negative disease with one or more PIK3CA mutations.

Cohort 4 will consist of participants with locally advanced or metastatic HER2+ /HER2-low disease with one or more PIK3CA mutations who had disease progression on standard-of-care therapies (HER2+ /HER2-low cohort).

In each cohort, eligible participants will initially be assigned to one of several treatment arms (Stage 1). During Stage 2, participants in the 2L CIT-nave cohort who experience disease progression, loss of clinical benefit, or unacceptable toxicity during Stage 1 may be eligible to continue treatment with a different treatment combination, provided Stage 2 is open for enrollment and all eligibility criteria are met.
Breast, Phase I
I/II
Kennedy, Laura
NCT03424005
VICCBREP2126

Phase I/II Trial in ES-SCLC to Enhance Response to Atezolizumab Plus Chemotherapy With Total Body Irradiation

Multiple Cancer Types

This phase I/II trial studies the side effects, safety, and effectiveness of low dose radiation to the entire body (total body irradiation \[TBI\]) and higher dose radiation to known areas of cancer (hypofractionated radiation therapy \[H-RT\]) combined with atezolizumab and chemotherapy (carboplatin \& etoposide) in treating patients with small cell lung cancer that has spread to disease sites outside of the lung (extensive stage). Extensive stage disease has historically been treated with chemotherapy alone with consideration of chest (thoracic) radiation therapy for those with response to chemotherapy, as well as consideration of preventative radiation therapy to the head (prophylactic cranial irradiation). Emerging evidence supports the synergistic interactions between immunotherapy and radiation therapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill tumor cells. Combining TBI and H-RT with atezolizumab and chemotherapy may improve response to treatment.
Lung, Small Cell
I/II
Osmundson, Evan
NCT06110572
VICCTHOP2206

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.