Clinical Trials Search at Vanderbilt-Ingram Cancer Center
A Study of [177Lu]Lu-DOTA-TATE in Newly Diagnosed ES-SCLC Patients in Combination With Carboplatin, Etoposide and Atezolizumab
This study aims to establish a safe and well tolerated dose of \[177Lu\]Lu-DOTA-TATE in combination with carboplatin, etoposide and atezolizumab in this setting and to assess preliminary efficacy of this combination treatment versus the combination of carboplatin, etoposide, and atezolizumab.The study will be essential to assess a new potential therapeutic option in participants with this aggressive cancer type.
Not Available
I/II
Ramirez, Robert
NCT05142696
VICC-DTTHO24168P
Phase I/II Trial in ES-SCLC to Enhance Response to Atezolizumab Plus Chemotherapy With Total Body Irradiation
Multiple Cancer Types
This phase I/II trial studies the side effects, safety, and effectiveness of low dose radiation to the entire body (total body irradiation \[TBI\]) and higher dose radiation to known areas of cancer (hypofractionated radiation therapy \[H-RT\]) combined with atezolizumab and chemotherapy (carboplatin \& etoposide) in treating patients with small cell lung cancer that has spread to disease sites outside of the lung (extensive stage). Extensive stage disease has historically been treated with chemotherapy alone with consideration of chest (thoracic) radiation therapy for those with response to chemotherapy, as well as consideration of preventative radiation therapy to the head (prophylactic cranial irradiation). Emerging evidence supports the synergistic interactions between immunotherapy and radiation therapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill tumor cells. Combining TBI and H-RT with atezolizumab and chemotherapy may improve response to treatment.
Lung,
Small Cell
I/II
Osmundson, Evan
NCT06110572
VICCTHOP2206
Circulating Tumor DNA to Guide Changes in Standard of Care Chemotherapy
Breast
Breast
This phase II trial tests how well evaluating circulating tumor deoxyribonucleic acid (ctDNA) works to guide therapy-change decisions in treating patients with triple-negative breast cancer (TNBC) that has spread from where it first started (primary site) to other places in the body (metastatic). This study wants to learn if small pieces of DNA associated with a tumor (called circulating tumor DNA, or ctDNA) can be detected in investigational blood tests during the course of standard chemotherapy treatment for breast cancer, and whether information from such investigational ctDNA blood testing could possibly be used as an early indication of chemotherapy treatment failure. It is hoped that additional information from investigational blood testing for ctDNA could help doctors to switch more quickly from a standard chemotherapy treatment that typically has significant side effects and which may not be working, to a different standard treatment regimen against TNBC, called sacituzumab govitecan. Sacituzumab govitecan is a monoclonal antibody, called hRS7, linked to a chemotherapy drug, called irinotecan. hRS7 is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as TROP2 receptors, and delivers irinotecan to kill them. Studying ctDNA may assist doctors to change therapy earlier if needed, and may improve health outcomes in patients with metastatic TNBC.
Breast
II
Abramson, Vandana
NCT05770531
VICCBRE2257
A Study Evaluating the Efficacy and Safety of Multiple Treatment Combinations in Patients With Metastatic or Locally Advanced Breast Cancer
Multiple Cancer Types
This is an umbrella study evaluating the efficacy and safety of multiple treatment combinations in participants with metastatic or inoperable locally advanced breast cancer.
The study will be performed in two stages. During Stage 1, four cohorts will be enrolled in parallel in this study:
Cohort 1 will consist of Programmed death-ligand 1 (PD-L1)-positive participants who have received no prior systemic therapy for metastatic or inoperable locally advanced triple-negative breast cancer (TNBC) (first-line \[1L\] PD-L1+ cohort).
Cohort 2 will consist of participants who had disease progression during or following 1L treatment with chemotherapy for metastatic or inoperable locally-advanced TNBC and have not received cancer immunotherapy (CIT) (second-line \[2L\] CIT-naive cohort).
Cohort 3 will consist of participants with locally-advanced or metastatic HR+, HER2-negative disease with PIK3CA mutation who may or may not have had disease progression during or following previous lines of treatment for metastatic disease (HR+cohort).
Cohort 4 will consist of participants with locally-advanced or metastatic HER2+ /HER2-low disease with PIK3CA mutation who had disease progression on standard-of-care therapies (HER2+ /HER2-low cohort).
In each cohort, eligible participants will initially be assigned to one of several treatment arms (Stage 1). In addition, participants in the 2L CIT-nave cohort who experience disease progression, loss of clinical benefit, or unacceptable toxicity during Stage 1 may be eligible to continue treatment with a different treatment combination (Stage 2), provided Stage 2 is open for enrollment.
The study will be performed in two stages. During Stage 1, four cohorts will be enrolled in parallel in this study:
Cohort 1 will consist of Programmed death-ligand 1 (PD-L1)-positive participants who have received no prior systemic therapy for metastatic or inoperable locally advanced triple-negative breast cancer (TNBC) (first-line \[1L\] PD-L1+ cohort).
Cohort 2 will consist of participants who had disease progression during or following 1L treatment with chemotherapy for metastatic or inoperable locally-advanced TNBC and have not received cancer immunotherapy (CIT) (second-line \[2L\] CIT-naive cohort).
Cohort 3 will consist of participants with locally-advanced or metastatic HR+, HER2-negative disease with PIK3CA mutation who may or may not have had disease progression during or following previous lines of treatment for metastatic disease (HR+cohort).
Cohort 4 will consist of participants with locally-advanced or metastatic HER2+ /HER2-low disease with PIK3CA mutation who had disease progression on standard-of-care therapies (HER2+ /HER2-low cohort).
In each cohort, eligible participants will initially be assigned to one of several treatment arms (Stage 1). In addition, participants in the 2L CIT-nave cohort who experience disease progression, loss of clinical benefit, or unacceptable toxicity during Stage 1 may be eligible to continue treatment with a different treatment combination (Stage 2), provided Stage 2 is open for enrollment.
Breast,
Phase I
I/II
Kennedy, Laura
NCT03424005
VICCBREP2126
Study of INBRX-106 and INBRX-106 in Combination With Pembrolizumab (Keytruda) in Subjects With Locally Advanced or Metastatic Solid Tumors (Hexavalent OX40 Agonist)
Phase I
Phase I
This is a Phase 1/2, open-label, non-randomized, 4-part trial to determine the safety profile and identify the maximum tolerated dose (MTD) and/or recommended Phase 2 dose (RP2D) of INBRX 106 administered as a single agent or in combination with the anti-PD-1 checkpoint inhibitor (CPI) pembrolizumab (Keytruda). KEYTRUDA is a registered trademark of Merck Sharp \& Dohme LLC, a subsidiary of Merck \& Co., Inc., Rahway, NJ, USA.
Phase I
I
Davis, Elizabeth
NCT04198766
VICCPHI2135
Split Course Adaptive Radiation Therapy With Pembrolizumab With/Without Chemotherapy for Treating Stage IV Lung Cancer
Multiple Cancer Types
This phase I/II trial tests the safety and efficacy of split-course adaptive radiation therapy in combination with immunotherapy with or without chemotherapy for the treatment of patients with stage IV lung cancer or lung cancer that that has spread to nearby tissue or lymph nodes (locally advanced). Radiation therapy is a standard cancer treatment that uses high energy rays to kill cancer cells and shrink tumors. Split-course adaptive radiation therapy uses patient disease response to alter the intensity of the radiation therapy. Immunotherapy with monoclonal antibodies such as pembrolizumab, ipilimumab, cemiplimab, atezolizumab or nivolumab may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs like carboplatin, pemetrexed, and paclitaxel work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving split-course adaptive radiation therapy with standard treatments like immunotherapy and chemotherapy may be more effective at treating stage IV or locally advanced lung cancer than giving them alone.
Lung,
Non Small Cell,
Phase I
I/II
Osmundson, Evan
NCT05501665
VICCTHOP2185
Active Surveillance, Bleomycin, Etoposide, Carboplatin or Cisplatin in Treating Pediatric and Adult Patients With Germ Cell Tumors
Multiple Cancer Types
This phase III trial studies how well active surveillance help doctors to monitor subjects with low risk germ cell tumors for recurrence after their tumor is removed. When the germ cell tumor has spread outside of the organ in which it developed, it is considered metastatic. Chemotherapy drugs, such as bleomycin, carboplatin, etoposide, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. The trial studies whether carboplatin or cisplatin is the preferred chemotherapy to use in treating metastatic standard risk germ cell tumors.
Germ Cell (Pediatrics),
Gynecologic,
Ovarian
III
Borinstein, Scott
NCT03067181
COGAGCT1531
Evaluating the Addition of the Immunotherapy Drug Atezolizumab to Standard Chemotherapy Treatment for Advanced or Metastatic Neuroendocrine Carcinomas That Originate Outside the Lung
Neuroendocrine
Neuroendocrine
This phase II/III trial compares the effect of immunotherapy with atezolizumab in combination with standard chemotherapy with a platinum drug (cisplatin or carboplatin) and etoposide versus standard therapy alone for the treatment of poorly differentiated extrapulmonary (originated outside the lung) neuroendocrine cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) or that has spread from where it first started (primary site) to other places in the body (metastatic). The other aim of this trial is to compare using atezolizumab just at the beginning of treatment versus continuing it beyond the initial treatment. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cisplatin and carboplatin are in a class of medications known as platinum-containing compounds that work by killing, stopping or slowing the growth of cancer cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair, and it may kill cancer cells. Giving atezolizumab in combination with a platinum drug (cisplatin or carboplatin) and etoposide may work better in treating patients with poorly differentiated extrapulmonary neuroendocrine cancer compared to standard therapy with a platinum drug (cisplatin or carboplatin) and etoposide alone.
Neuroendocrine
II/III
Ramirez, Robert
NCT05058651
SWOGGIS2012
Phase 1 Study of INBRX-109 in Subjects with Locally Advanced or Metastatic Solid Tumors Including Sarcomas
Multiple Cancer Types
This is a first-in-human, open-label, non-randomized, three-part phase 1 trial of INBRX-109, which is a recombinant humanized tetravalent antibody targeting the human death receptor 5 (DR5).
Miscellaneous,
Phase I
I
Davis, Elizabeth
NCT03715933
VICCMDP2287
A Trial to Find Out How Safe REGN7075 is and How Well it Works in Combination With Cemiplimab for Adult Participants With Advanced Cancers
Multiple Cancer Types
This study is researching an investigational drug called REGN7075 by itself and in combination with cemiplimab with or without chemotherapy. The study is focused on patients with certain solid tumors that are in an advanced stage. The aim of the study is to see how safe and tolerable REGN7075 is by itself and in combination with cemiplimab (with or without chemotherapy), and to find out what is the best dose of REGN7075 to be given to patients with advanced solid tumors when combined with cemiplimab (with or without chemotherapy). Another aim of the study is to see how effective REGN7075 by itself, or in combination with cemiplimab (with or without chemotherapy), is at treating cancer patients.
The study is also looking at:
* Side effects that may be experienced by people taking REGN7075 by itself and in combination with cemiplimab with or without chemotherapy
* How REGN7075 works in the body by itself and in combination with cemiplimab with or without chemotherapy
* How much REGN7075 is present in the blood when given by itself and in combination with cemiplimab with or without chemotherapy
* To see if REGN7075 by itself and in combination with cemiplimab with or without chemotherapy works to treat cancer by controlling the proliferation of tumor cells to shrink the tumor
The study is also looking at:
* Side effects that may be experienced by people taking REGN7075 by itself and in combination with cemiplimab with or without chemotherapy
* How REGN7075 works in the body by itself and in combination with cemiplimab with or without chemotherapy
* How much REGN7075 is present in the blood when given by itself and in combination with cemiplimab with or without chemotherapy
* To see if REGN7075 by itself and in combination with cemiplimab with or without chemotherapy works to treat cancer by controlling the proliferation of tumor cells to shrink the tumor
Adrenocortical,
Bladder,
Breast,
Cervical,
Colon,
Esophageal,
GIST,
Gastric/Gastroesophageal,
Gastrointestinal,
Gynecologic,
Head/Neck,
Kidney (Renal Cell),
Liver,
Lung,
Miscellaneous,
Non Small Cell,
Ovarian,
Pancreatic,
Phase I,
Prostate,
Rectal,
Urologic,
Uterine
I/II
Choe, Jennifer
NCT04626635
VICC-DTPHI24031