Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Active Surveillance, Bleomycin, Carboplatin, Etoposide, or Cisplatin in Treating Pediatric and Adult Patients with Germ Cell Tumors

Multiple Cancer Types

This phase III trial studies how well active surveillance, bleomycin, carboplatin, etoposide, or cisplatin work in treating pediatric and adult patients with germ cell tumors. Active surveillance may help doctors to monitor subjects with low risk germ cell tumors after their tumor is removed. Drugs used in chemotherapy, such as bleomycin, carboplatin, etoposide, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
Germ Cell (Pediatrics), Gynecologic, Ovarian
III
Borinstein, Scott
NCT03067181
COGAGCT1531

Imatinib Mesylate and Combination Chemotherapy in Treating Patients with Newly Diagnosed Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia

Multiple Cancer Types

This randomized phase III trial studies how well imatinib mesylate and combination chemotherapy work in treating patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia. Imatinib mesylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving imatinib mesylate and combination chemotherapy may work better in treating patients with Philadelphia chromosome positive acute lymphoblastic leukemia.
Pediatric Leukemia, Pediatrics
III
Zarnegar-Lumley, Sara
NCT03007147
COGAALL1631

Response-Based Chemotherapy in Treating Newly Diagnosed Acute Myeloid Leukemia or Myelodysplastic Syndrome in Younger Patients with Down Syndrome

Multiple Cancer Types

This phase III trial studies response-based chemotherapy in treating newly diagnosed acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Response-based chemotherapy separates patients into different risk groups and treats them according to how they respond to the first course of treatment (Induction I). Response-based treatment may be effective in treating acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome while reducing the side effects.
Myelodysplastic Syndrome, Pediatric Leukemia
III
Friedman, Debra
NCT02521493
COGAAML1531

Cisplatin and Combination Chemotherapy in Treating Children and Young Adults with Hepatoblastoma or Liver Cancer After Surgery

Multiple Cancer Types

This partially randomized phase II / III trial studies how well, in combination with surgery, cisplatin and combination chemotherapy works in treating children and young adults with hepatoblastoma or hepatocellular carcinoma. Drugs used in chemotherapy, such as cisplatin, doxorubicin, fluorouracil, vincristine sulfate, carboplatin, etoposide, irinotecan, sorafenib, gemcitabine and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving combination chemotherapy may kill more tumor cells than one type of chemotherapy alone.
Hepatoblastoma (Pediatrics), Pediatric Solid Tumors, Pediatrics
II/III
Borinstein, Scott
NCT03533582
COGAHEP1531

Standard Chemotherapy in Treating Young Patients with Medulloblastoma or Other Central Nervous System Primitive Neuro-ectodermal Tumors

Neuroblastoma (Pediatrics)

This phase IV trial studies how well standard chemotherapy works in treating young patients with medulloblastoma or other central nervous system primitive neuro-ectodermal tumors. Drugs used in standard chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
Neuroblastoma (Pediatrics)
IV
Esbenshade, Adam
NCT02875314
VICCPED1751

Accelerated or Standard BEP Chemotherapy in Treating Patients with Intermediate or Poor-Risk Metastatic Germ Cell Tumors

Germ Cell (Pediatrics)

This randomized phase III trial studies how well an accelerated schedule of bleomycin sulfate, etoposide phosphate, and cisplatin (BEP) chemotherapy works compared to the standard schedule of BEP chemotherapy in treating patients with intermediate or poor-risk germ cell tumors that have spread to other places in the body (metastatic). Drugs used in chemotherapy, such as bleomycin sulfate, etoposide phosphate, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BEP chemotherapy on a faster, or “accelerated” schedule may work better with fewer side effects in treating patients with intermediate or poor-risk metastatic germ cell tumors compared to the standard schedule.
Germ Cell (Pediatrics)
III
Borinstein, Scott
NCT02582697
COGAGCT1532

Iobenguane I-131 or Crizotinib and Standard Therapy in Treating Younger Patients with Newly-Diagnosed High-Risk Neuroblastoma or Ganglioneuroblastoma

Multiple Cancer Types

This phase III trial studies iobenguane I-131 or crizotinib and standard therapy in treating younger patients with newly-diagnosed high-risk neuroblastoma or ganglioneuroblastoma. Radioactive drugs, such as iobenguane I-131, may carry radiation directly to tumor cells and not harm normal cells. Crizotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving iobenguane I-131 or crizotinib and standard therapy may work better compared to crizotinib and standard therapy alone in treating younger patients with neuroblastoma or ganglioneuroblastoma.
Neuroblastoma (Pediatrics), Pediatrics
III
Benedetti, Daniel
NCT03126916
COGANBL1531

A Study of Atezolizumab Plus Carboplatin and Etoposide With or Without Tiragolumab in Patients With Untreated Extensive-Stage Small Cell Lung Cancer

Lung

This study will evaluate the efficacy of tiragolumab plus atezolizumab and carboplatin and etoposide (CE) compared with placebo plus atezolizumab and CE in participants with chemotherapy-naive extensive-stage small cell lung cancer (ES-SCLC). Eligible participants will be randomized in a 1:1 ratio to receive one of the following treatment regimens during induction phase:- - Arm A: Tiragolumab plus atezolizumab and CE - Arm B: Placebo plus atezolizumab and CE Following the induction phase, participants will continue maintenance therapy with either atezolizumab plus tiragolumab (Arm A) or atezolizumab plus placebo (Arm B).
Lung
III
Iams, Wade
NCT04256421
VICCTHO19137

Standard-Dose Combination Chemotherapy or High-Dose Combination Chemotherapy and Stem Cell Transplant in Treating Patients with Relapsed or Refractory Germ Cell Tumors

Multiple Cancer Types

This randomized phase III trial studies how well standard-dose combination chemotherapy works compared to high-dose combination chemotherapy and stem cell transplant in treating patients with germ cell tumors that have returned after a period of improvement or did not respond to treatment. Drugs used in chemotherapy, such as paclitaxel, ifosfamide, cisplatin, carboplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before a stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. Giving colony-stimulating factors, such as filgrastim or pegfilgrastim, and certain chemotherapy drugs, helps stem cells move from the bone marrow to the blood so they can be collected and stored. Chemotherapy is then given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. It is not yet known whether high-dose combination chemotherapy and stem cell transplant are more effective than standard-dose combination chemotherapy in treating patients with refractory or relapsed germ cell tumors.
Germ Cell (Pediatrics), Pediatrics
III
Borinstein, Scott
NCT02375204
COGA031102

To learn more about any of our clinical
trials, call 1-800-811-8480 or complete
the online Self-Referral Form here: