Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Testing the Effectiveness of Two Immunotherapy Drugs (Nivolumab and Ipilimumab) with One Anti-cancer Targeted Drug (Cabozantinib) for Rare Genitourinary Tumors

Multiple Cancer Types

This phase II trial studies how well cabozantinib works in combination with nivolumab and ipilimumab in treating patients with rare genitourinary (GU) tumors that have spread to other places in the body. Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib, nivolumab, and ipilimumab may work better in treating patients with genitourinary tumors that have no treatment options compared to giving cabozantinib, nivolumab, or ipilimumab alone.
Bladder, Kidney (Renal Cell), Rectal
II
Davis, Nancy
NCT03866382
ALLIANCEUROA031702

Targeted Therapy Directed by Genetic Testing in Treating Patients with Advanced Refractory Solid Tumors, Lymphomas, or Multiple Myeloma (The MATCH Screening Trial)

This phase II MATCH trial studies how well treatment that is directed by genetic testing works in patients with solid tumors or lymphomas that have progressed following at least one line of standard treatment or for which no agreed upon treatment approach exists. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic abnormalities (such as mutations, amplifications, or translocations) may benefit more from treatment which targets their tumor's particular genetic abnormality. Identifying these genetic abnormalities first may help doctors plan better treatment for patients with solid tumors, lymphomas, or multiple myeloma.
Not Available
II
Johnson, Douglas
NCT02465060
ECOGMDEAY131

Nivolumab and Ipilimumab in Treating Patients with Rare Tumors

Miscellaneous

This phase II trial studies nivolumab and ipilimumab in treating patients with rare tumors. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial enrolls participants for the following cohorts based on condition: 1. Epithelial tumors of nasal cavity, sinuses, nasopharynx: A) Squamous cell carcinoma with variants of nasal cavity, sinuses, and nasopharynx and trachea (excluding laryngeal, nasopharyngeal cancer [NPC], and squamous cell carcinoma of the head and neck [SCCHN]) B) Adenocarcinoma and variants of nasal cavity, sinuses, and nasopharynx (closed to accrual 07 / 27 / 2018) 2. Epithelial tumors of major salivary glands (closed to accrual 03 / 20 / 2018) 3. Salivary gland type tumors of head and neck, lip, esophagus, stomach, trachea and lung, breast and other location (closed to accrual) 4. Undifferentiated carcinoma of gastrointestinal (GI) tract 5. Adenocarcinoma with variants of small intestine (closed to accrual 05 / 10 / 2018) 6. Squamous cell carcinoma with variants of GI tract (stomach small intestine, colon, rectum, pancreas) (closed to accrual 10 / 17 / 2018) 7. Fibromixoma and low grade mucinous adenocarcinoma (pseudomixoma peritonei) of the appendix and ovary (closed to accrual 03 / 20 / 2018) 8. Rare pancreatic tumors including acinar cell carcinoma, mucinous cystadenocarcinoma or serous cystadenocarcinoma. Pancreatic adenocarcinoma is not eligible (closed to accrual) 9. Intrahepatic cholangiocarcinoma (closed to accrual 03 / 20 / 2018) 10. Extrahepatic cholangiocarcinoma and bile duct tumors (closed to accrual 03 / 20 / 2018) 11. Sarcomatoid carcinoma of lung 12. Bronchoalveolar carcinoma lung. This condition is now also referred to as adenocarcinoma in situ, minimally invasive adenocarcinoma, lepidic predominant adenocarcinoma, or invasive mucinous adenocarcinoma 13. Non-epithelial tumors of the ovary: A) Germ cell tumor of ovary B) Mullerian mixed tumor and adenosarcoma (closed to accrual 03 / 30 / 2018) 14. Trophoblastic tumor: A) Choriocarcinoma (closed to accrual) 15. Transitional cell carcinoma other than that of the renal, pelvis, ureter, or bladder (closed to accrual) 16. Cell tumor of the testes and extragonadal germ tumors: A) Seminoma and testicular sex cord cancer B) Non-seminomatous tumor C) Teratoma with malignant transformation (closed to accrual) 17. Epithelial tumors of penis - squamous adenocarcinoma cell carcinoma with variants of penis (closed to accrual) 18. Squamous cell carcinoma variants of the genitourinary (GU) system 19. Spindle cell carcinoma of kidney, pelvis, ureter 20. Adenocarcinoma with variants of GU system (excluding prostate cancer) (closed to accrual 07 / 27 / 2018) 21. Odontogenic malignant tumors 22. Pancreatic neuroendocrine tumor (PNET) (formerly named: Endocrine carcinoma of pancreas and digestive tract.) (closed to accrual) 23. Neuroendocrine carcinoma including carcinoid of the lung (closed to accrual 12 / 19 / 2017) 24. Pheochromocytoma, malignant (closed to accrual) 25. Paraganglioma (closed to accrual 11 / 29 / 2018) 26. Carcinomas of pituitary gland, thyroid gland parathyroid gland and adrenal cortex (closed to accrual) 27. Desmoid tumors 28. Peripheral nerve sheath tumors and NF1-related tumors (closed to accrual 09 / 19 / 2018) 29. Malignant giant cell tumors 30. Chordoma (closed to accrual 11 / 29 / 2018) 31. Adrenal cortical tumors (closed to accrual 06 / 27 / 2018) 32. Tumor of unknown primary (Cancer of Unknown Primary; CuP) (closed to accrual 12 / 22 / 2017) 33. Not Otherwise Categorized (NOC) Rare Tumors [To obtain permission to enroll in the NOC cohort, contact: S1609SC@swog.org] (closed to accrual 03 / 15 / 2019) 34. Adenoid cystic carcinoma (closed to accrual 02 / 06 / 2018) 35. Vulvar cancer (closed to accrual) 36. MetaPLASTIC carcinoma (of the breast) (closed to accrual) 37. Gastrointestinal stromal tumor (GIST) (closed to accrual 09 / 26 / 2018) 38. Perivascular epithelioid cell tumor (PEComa) 39. Apocrine tumors / extramammary Paget’s disease (closed to accrual) 40. Peritoneal mesothelioma 41. Basal cell carcinoma (temporarily closed to accrual 04 / 29 / 2020) 42. Clear cell cervical cancer 43. Esthenioneuroblastoma (closed to accrual) 44. Endometrial carcinosarcoma (malignant mixed Mullerian tumors) (closed to accrual) 45. Clear cell endometrial cancer 46. Clear cell ovarian cancer (closed to accrual) 47. Gestational trophoblastic disease (GTD) 48. Gallbladder cancer 49. Small cell carcinoma of the ovary, hypercalcemic type 50. PD-L1 amplified tumors 51. Angiosarcoma 52. High-grade neuroendocrine carcinoma (pancreatic neuroendocrine tumor [PNET] should be enrolled in Cohort 22; prostatic neuroendocrine carcinomas should be enrolled into Cohort 53). Small cell lung cancer is not eligible (closed to accrual) 53. Treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC)
Miscellaneous
II
Berlin, Jordan
NCT02834013
ECOGMDS1609

Testing the Combination of Anetumab Ravtansine With Either Nivolumab, Nivolumab and Ipilimumab, or Gemcitabine and Nivolumab in Advanced Pancreatic Cancer

Multiple Cancer Types

This phase I trial studies the side effects and best dose of anetumab ravtansine when given together with nivolumab, ipilimumab and gemcitabine hydrochloride in treating patients with mesothelin positive pancreatic cancer that has spread to other places in the body (advanced). Anetumab ravtansine is a monoclonal antibody, called anetumab ravtansine, linked to a chemotherapy drug called DM4. Anetumab attaches to mesothelin positive cancer cells in a targeted way and delivers DM4 to kill them. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as gemcitabine hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving anetumab ravtansine together with nivolumab, ipilimumab, and gemcitabine hydrochloride may work better in treating patients with pancreatic cancer.
Pancreatic, Phase I
I
Cardin, Dana
NCT03816358
VICCGIP1931ET-CT

Immunotherapy (Nivolumab or Brentuximab Vedotin) Plus Combination Chemotherapy in Treating Patients with Newly Diagnosed Stage III-IV Classic Hodgkin Lymphoma

Multiple Cancer Types

This phase III trial compares immunotherapy drugs (nivolumab or brentuximab vedotin) when given with combination chemotherapy in treating patients with newly diagnosed stage III or IV classic Hodgkin lymphoma. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Brentuximab vedotin is a monoclonal antibody, brentuximab, linked to a toxic agent called vedotin. Brentuximab attaches to cancer cells in a targeted way and delivers vedotin to kill them. Chemotherapy drugs, such as doxorubicin, vinblastine, and dacarbazine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. The addition of nivolumab or brentuximab vedotin to combination chemotherapy may shrink the cancer or extend the time without disease symptoms coming back.
Pediatric Lymphoma, Pediatrics
III
Friedman, Debra
NCT03907488
COGPEDS1826

Nivolumab and Ipilimumab in Treating Patients with Esophageal and Gastroesophageal Junction Adenocarcinoma Undergoing Surgery

Multiple Cancer Types

This phase II / III trial studies the usefulness of treatment with nivolumab and ipilimumab in addition to standard of care chemotherapy and radiation therapy in patients with esophageal and gastroesophageal junction adenocarcinoma who are undergoing surgery. Immunotherapy with antibodies, such as nivolumab and ipilimumab, may remove the brake on the body’s immune system and may interfere with the ability of tumor cells to grow and spread. Chemotherapy and radiation therapy may reduce the tumor size and the amount of normal tissue that needs to be removed during surgery. A combined treatment with nivolumab and ipilimumab, chemotherapy, and radiation therapy might be more effective in patients with esophageal and gastroesophageal junction adenocarcinoma who are undergoing surgery.
Esophageal, Gastric/Gastroesophageal
II/III
Gibson, Mike
NCT03604991
ECOGGIEA2174

Nivolumab with or without Azacitidine in Treating Patients with Recurrent Resectable Osteosarcoma

Multiple Cancer Types

This phase I / II trial studies the best dose and side effects of azacitidine and how well it works with or without nivolumab in treating patients with osteosarcoma that has come back (recurrent) and can be removed by surgery (resectable). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nivolumab and azacitidine together may work better compared to nivolumab alone in treating patients with osteosarcoma.
Phase I, Sarcoma
I/II
Borinstein, Scott
NCT03628209
VICCPED2012

A Study of Chemo Only Versus Chemo Plus Nivo With or Without BMS-986205, Followed by Post- Surgery Therapy With Nivo or Nivo and BMS-986205 in Patients With MIBC

Bladder

A study to evaluate nivolumab + chemotherapy or nivolumab / BMS-986205 + chemotherapy followed by continued Immuno-Oncology therapy after radical cystectomy (RC) compared with neoadjuvant standard of care (SOC) chemotherapy alone in patients with muscle-invasive bladder cancer (MIBC)
Bladder
III
Davis, Nancy
NCT03661320
VICCURO18152

A Study Comparing Nivolumab, Nivolumab in Combination With Ipilimumab and Placebo in Participants With Localized Kidney Cancer Who Underwent Surgery to Remove Part of a Kidney

Multiple Cancer Types

The purpose of this study is to determine whether nivolmab alone or the combination of nivolumab and ipilimumab versus placebo, is safe and effective for delaying or preventing recurrence of cancer in participants who have experienced partial or entire removal of a kidney.
Kidney (Renal Cell), Urologic
III
Beckermann, Kathryn
NCT03138512
VICCURO1953

Nivolumab and Vorolanib in Treating Patients with Non-Small Cell Lung Cancer and Refractory Thoracic Tumors

Multiple Cancer Types

This phase I / II trial studies the side effects and best dose of vorolanib when given in combination with nivolumab in treating patients with non-small cell lung cancer and thoracic tumors that aren't responding to treatment (refractory). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Vorolanib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving nivolumab and vorolanib may work better in treating patients with non-small cell lung cancer and thoracic tumors.
Lung, Non Small Cell
I/II
Beckermann, Kathryn
NCT03583086
VICCTHO1802

To learn more about any of our clinical
trials, call 1-800-811-8480 or complete
the online Self-Referral Form here: