Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Studying the Effect of Levocarnitine in Protecting the Liver from Chemotherapy for Leukemia or Lymphoma

This phase III trial compares the effect of adding levocarnitine to standard chemotherapy vs. standard chemotherapy alone in protecting the liver in patients with leukemia or lymphoma. Asparaginase is part of the standard of care chemotherapy for the treatment of acute lymphoblastic leukemia (ALL), lymphoblastic lymphoma (LL), and mixed phenotype acute leukemia (MPAL). However, in adolescent and young adults (AYA) ages 15-39 years, liver toxicity from asparaginase is common and often prevents delivery of planned chemotherapy, thereby potentially compromising outcomes. Some groups of people may also be at higher risk for liver damage due to the presence of fat in the liver even before starting chemotherapy. Patients who are of Japanese descent, Native Hawaiian, Hispanic or Latinx may be at greater risk for liver damage from chemotherapy for this reason. Carnitine is a naturally occurring nutrient that is part of a typical diet and is also made by the body. Carnitine is necessary for metabolism and its deficiency or absence is associated with liver and other organ damage. Levocarnitine is a drug used to provide extra carnitine. Laboratory and real-world usage of the dietary supplement levocarnitine suggests its potential to prevent or reduce liver toxicity from asparaginase. The overall goal of this study is to determine whether adding levocarnitine to standard of care chemotherapy will reduce the chance of developing severe liver damage from asparaginase chemotherapy in ALL, LL and/or MPAL patients.
Not Available
III
Not Available
NCT05602194
VICC-NTPED23475

TPIV100 and Sargramostim for the Treatment of HER2 Positive, Stage I-III Breast Cancer in Patients with Residual Disease after Chemotherapy and Surgery

This phase II trial studies how well TPIV100 and sargramostim work in treating patients with HER2 positive, stage I-III breast cancer that has residual disease after chemotherapy prior to surgery. It also studies why some HER2 positive breast cancer patients respond better to chemotherapy in combination with trastuzumab and pertuzumab. TPIV100 is a type of vaccine made from HER2 peptide that may help the body build an effective immune response to kill tumor cells that express HER2. Sargramostim increases the number of white blood cells in the body following chemotherapy for certain types of cancer and is used to alert the immune system. It is not yet known if TPIV100 and sargramostim will work better in treating patients with HER2 positive, stage I-III breast cancer.
Not Available
II
Not Available
NCT04197687
VICCBRE2241

Study of RYZ101 Compared With SOC in Pts w Inoperable SSTR+ Well-differentiated GEP-NET That Has Progressed Following 177Lu-SSA Therapy

This study aims to determine the safety, pharmacokinetics (PK) and recommended Phase 3 dose
(RP3D) of RYZ101 in Part 1, and the safety, efficacy, and PK of RYZ101 compared with
investigator-selected standard of care (SoC) therapy in Part 2 in subjects with inoperable,
advanced, well-differentiated, somatostatin receptor expressing (SSTR+)
gastroenteropancreatic neuroendocrine tumors (GEP-NETs) that have progressed following
treatment with Lutetium 177-labelled somatostatin analogue (177Lu-SSA) therapy, such as
177Lu-DOTATATE or 177Lu-DOTATOC (177Lu-DOTATATE/TOC), or 177Lu-high affinity [HA]-DOTATATE.
Not Available
I/III
Not Available
NCT05477576
VICCGIP2209

A Study of Tucatinib With Trastuzumab and mFOLFOX6 Versus Standard of Care Treatment in First-line HER2+ Metastatic Colorectal Cancer

This study is being done to find out if tucatinib with other cancer drugs works better than
standard of care to treat participants with HER2 positive colorectal cancer. This study will
also test what side effects happen when participants take this combination of drugs. A side
effect is anything a drug does to the body besides treating your disease.

Participants in this study have colorectal cancer that has spread through the body
(metastatic) and/or cannot be removed with surgery (unresectable).

Participants will be assigned randomly to the tucatinib group or standard of care group. The
tucatinib group will get tucatinib, trastuzumab, and mFOLFOX6. The standard of care group
will get either:

- mFOLFOX6 alone,

- mFOLFOX6 with bevacizumab, or

- mFOLFOX6 with cetuximab mFOLFOX6 is a combination of multiple drugs. All of the drugs
given in this study are used to treat this type of cancer.
Not Available
III
Not Available
NCT05253651
VICC-DTGIT23052

A Study to Assess Adverse Events of Intravenously (IV) Infused ABBV-383 in Adult Participants With Relapsed or Refractory Multiple Myeloma

Multiple Myeloma (MM) is a cancer of the blood's plasma cells ( blood cell). The cancer is
typically found in the bones and bone marrow (the spongy tissue inside of the bones) and can
cause bone pain, fractures, infections, weaker bones, and kidney failure. Treatments are
available, but MM can come back (relapsed) or may not get better (refractory) with treatment.
This is a study to determine adverse events and change in disease symptoms of ABBV-383 in
adult participants with relapsed/refractory (R/R) MM.

ABBV-383 is an investigational drug being developed for the treatment of R/R Multiple Myeloma
(MM). This study is broken into 2 Arms; Arm A (Parts 1 and 2) and Arm B. Arm A includes 2
parts: step-up dose optimization (Part 1) and dose expansion (Part 2). In Part 1, different
level of step-up doses are tested followed by the target dose of ABBV-383. In Part 2, the
step-up dose identified in Part 1 (Dose A) will be used followed by the target dose A of
ABBV-383. In Arm B a flat dose of ABBV-383 will be tested. Around 120 adult participants with
relapsed/refractory multiple myeloma will be enrolled at approximately 30 sites across the
world.

Participants will receive ABBV-383 as an infusion into the vein in 28 day cycles for
approximately 3 years.

There may be higher treatment burden for participants in this trial compared to their
standard of care. Participants will attend regular visits during the study at a hospital or
clinic. The effect of the treatment will be checked by medical assessments, blood tests,
checking for side effects and questionnaires.
Not Available
I
Not Available
NCT05650632
VICC-DTPCL23010P

Nivolumab and Ipilimumab for the Treatment of Patients with Locally Advanced, Metastatic, or Unresectable Liver Cancer

This phase II trial tests whether nivolumab and ipilimumab works to shrink tumors in patients with liver cancer that has spread to nearby tissue or lymph nodes (locally advanced), has spread to other places in the body (metastatic), or cannot be removed by surgery (unresectable). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Nivolumab and ipilimumab may be effective in killing tumor cells in patients with liver cancer.
Not Available
II
Not Available
NCT05199285
VICCGI2277

Testing the Addition of Total Ablative Therapy to Usual Systemic Therapy Treatment for Limited Metastatic Colorectal Cancer, ERASur Trial

This phase III trial compares the addition of total ablative therapy to the usual systemic therapy versus the usual systemic therapy alone in treating patients with advanced colorectal cancer that has spread to up to 4 body sites (limited metastatic). The usual approach for patients who are not participating in a study is treatment with intravenous (through a vein) and/or oral medications (systemic therapy) to help stop the cancer sites from getting larger and the spread of the cancer to additional body sites. The ablative local therapy will consist of very focused, intensive radiotherapy called stereotactic ablative radiotherapy (SABR) with or without surgical resection and/or microwave ablation, which is a procedure where a needle is temporarily inserted in the tumor and heat is used to destroy the cancer cells. The addition of ablative local therapy to the usual approach of systemic therapy could be more effective than usual chemotherapy alone by increasing the life of patients with limited metastatic colorectal cancer.
Not Available
III
Not Available
NCT05673148
VICC-NTGIT23268

Inotuzumab Ozogamicin and Post-Induction Chemotherapy in Treating Patients with High-Risk B-ALL, Mixed Phenotype Acute Leukemia, and B-LLy

This phase III trial studies whether inotuzumab ozogamicin added to post-induction chemotherapy for patients with High-Risk B-cell Acute Lymphoblastic Leukemia (B-ALL) improves outcomes. This trial also studies the outcomes of patients with mixed phenotype acute leukemia (MPAL), and B-lymphoblastic lymphoma (B-LLy) when treated with ALL therapy without inotuzumab ozogamicin. Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a type of chemotherapy called calicheamicin. Inotuzumab attaches to cancer cells in a targeted way and delivers calicheamicin to kill them. Other drugs used in the chemotherapy regimen, such as cyclophosphamide, cytarabine, dexamethasone, doxorubicin, daunorubicin, methotrexate, leucovorin, mercaptopurine, prednisone, thioguanine, vincristine, and pegaspargase or calaspargase pegol work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial will also study the outcomes of patients with mixed phenotype acute leukemia (MPAL) and disseminated B lymphoblastic lymphoma (B-LLy) when treated with high-risk ALL chemotherapy.

The overall goal of this study is to understand if adding inotuzumab ozogamicin to standard of care chemotherapy maintains or improves outcomes in High Risk B-cell Acute Lymphoblastic Leukemia (HR B-ALL). The first part of the study includes the first two phases of therapy: Induction and Consolidation. This part will collect information on the leukemia, as well as the effects of the initial treatment, in order to classify patients into post-consolidation treatment groups. On the second part of this study, patients will receive the remainder of the chemotherapy cycles (interim maintenance I, delayed intensification, interim maintenance II, maintenance), with some patients randomized to receive inotuzumab. Other aims of this study include investigating whether treating both males and females with the same duration of chemotherapy maintains outcomes for males who have previously been treated for an additional year compared to girls, as well as to evaluate the best ways to help patients adhere to oral chemotherapy regimens. Finally, this study will be the first to track the outcomes of subjects with disseminated B-cell Lymphoblastic Leukemia (B-LLy) or Mixed Phenotype Acute Leukemia (MPAL) when treated with B-ALL chemotherapy.
Not Available
III
Not Available
NCT03959085
COGAALL1732

A Study to Compare Standard Chemotherapy to Therapy with CPX-351 and/or Gilteritinib for Patients with Newly Diagnosed AML with or without FLT3 Mutations

This phase III trial compares standard chemotherapy to therapy with liposome-encapsulated daunorubicin-cytarabine (CPX-351) and/or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and/or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and/or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3/ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and/or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.
Not Available
III
Not Available
NCT04293562
COGAAML1831

Long-term Safety and Efficacy Extension Study for Participants With Advanced Tumors Who Are Currently on Treatment or in Follow-up in a Pembrolizumab (MK-3475) Study (MK-3475-587/KEYNOTE-587)

The purpose of this study is to evaluate the long-term safety and efficacy of pembrolizumab
(MK-3475) in participants from previous Merck pembrolizumab-based parent studies who
transition into this extension study.

This study will consist of three phases: 1) First Course Phase, 2) Survival Follow-up Phase
or 3) Second Course Phase. Each participant will transition to this extension study in one of
the following three phases, depending on the study phase they were in at the completion of
the parent study. Participants who were in the First Course Phase of study treatment with
pembrolizumab or lenvatinib in their parent study will enter the First Course Phase of this
study and complete up to 35 doses or more every 3 weeks (Q3W) or 17 doses or more every 6
weeks (Q6W) of study treatment with pembrolizumab or a pembrolizumab-based combination or
lenvatinib according to arm assignment. Participants who were in the Follow-up Phase in the
parent study (post-treatment or Survival Follow-up Phase) will enter the Survival Follow-up
Phase of this study. Participants who were in the Second Course Phase in their parent study
will enter Second Course Phase of this study and complete up to 17 doses Q3W or 8 doses Q6W
of study treatment with pembrolizumab or a pembrolizumab-based combination according to arm
assignment.

Any participant originating from a parent trial where crossover to pembrolizumab was
permitted upon disease progression may be eligible for 35 doses as Q3W or 17 doses Q6W of
pembrolizumab (approximately 2 years), if they progress while on the control arm and
pembrolizumab is approved for the indication in the country where the potential eligible
crossover participant is being evaluated.
Not Available
III
Not Available
NCT03486873
VICCMD1932

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.