Clinical Trials Search at Vanderbilt-Ingram Cancer Center
Dose Optimization and Expansion Study of DFV890 in Adult Patients With Myeloid Diseases
Hematologic
Hematologic
Study CDFV890G12101 is an open-label, phase 1b, multicenter study with a randomized two-dose
optimization part, and a dose expansion part consisting of two groups evaluating DFV890 in
patients with myeloid diseases. The purpose of this study is to assess the safety,
tolerability, pharmacokinetics, pharmacodynamics, efficacy and recommended dose for single
agent DFV890 in patients with lower risk (LR: very low, low or intermediate risk)
myelodysplastic syndromes (LR MDS) and lower risk chronic myelomonocytic leukemia (LR CMML).
optimization part, and a dose expansion part consisting of two groups evaluating DFV890 in
patients with myeloid diseases. The purpose of this study is to assess the safety,
tolerability, pharmacokinetics, pharmacodynamics, efficacy and recommended dose for single
agent DFV890 in patients with lower risk (LR: very low, low or intermediate risk)
myelodysplastic syndromes (LR MDS) and lower risk chronic myelomonocytic leukemia (LR CMML).
Hematologic
I
Kishtagari, Ashwin
NCT05552469
VICC-DTHEM23007P
Testing the Combination of New Anti-cancer Drug Peposertib with Avelumab and Radiation Therapy for Advanced/Metastatic Solid Tumors and Hepatobiliary Malignancies
This phase I/II trial studies the best dose and side effects of peposertib and to see how well it works with avelumab and hypofractionated radiation therapy in treating patients with solid tumors and hepatobiliary malignancies that have spread to other places in the body (advanced/metastatic). Peposertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as avelumab, may help the bodys immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving peposertib in combination with avelumab and hypofractionated radiation therapy may work better than other standard chemotherapy, hormonal, targeted, or immunotherapy medicines available in treating patients with solid tumors and hepatobiliary malignancies.
Not Available
I/II
Heumann, Thatcher
NCT04068194
VICC-NTGIT24020
Testing the Addition of Pembrolizumab, an Immunotherapy Cancer Drug to Olaparib Alone as Therapy for Patients with Pancreatic Cancer That Has Spread with Inherited BRCA Mutations
Pancreatic
Pancreatic
This phase II trial studies whether adding pembrolizumab to olaparib (standard of care) works better than olaparib alone in treating patients with pancreatic cancer with germline BRCA1 or BRCA2 mutations that has spread to other places in the body (metastatic). BRCA1 and BRCA2 are human genes that produce tumor suppressor proteins. These proteins help repair damaged deoxyribonucleic acid (DNA) and, therefore, play a role in ensuring the stability of each cells genetic material. When either of these genes is mutated, or altered, such that its protein product is not made or does not function correctly, DNA damage may not be repaired properly. As a result, cells are more likely to develop additional genetic alterations that can lead to some types of cancer, including pancreatic cancer. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Olaparib is an inhibitor of PARP, a protein that helps repair damaged DNA. Blocking PARP may help keep tumor cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. The addition of pembrolizumab to the usual treatment of olaparib may help to shrink tumors in patients with metastatic pancreatic cancer with BRCA1 or BRCA2 mutations.
Pancreatic
II
Cardin, Dana
NCT04548752
SWOGGIS2001
Pembrolizumab versus Observation in Patients with Early Stage Triple-Negative Breast Cancer who had a Pathologic Complete Response after Chemotherapy plus Pembrolizumab, OptimICE-PCR Trial
Breast
Breast
This phase III trial compares the effect of continuation of treatment with pembrolizumab (usual approach) to observation only at preventing cancer from coming back in patients with early-stage triple-negative breast cancer (TNBC) who achieved a pathologic complete response after preoperative chemotherapy in combination with pembrolizumab. The usual approach for patients with early-stage TNBC who receive preoperative chemotherapy plus pembrolizumab is to continue to receive pembrolizumab for up to 27 weeks after surgery. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial may help researchers determine if observation is as good as receiving pembrolizumab for 27 weeks after surgery in triple-negative breast cancer patients who achieved a pathologic complete response after preoperative treatment with chemotherapy and pembrolizumab.
Breast
III
Abramson, Vandana
NCT05812807
VICC-NTBRE23357
Two Studies for Patients with Unfavorable Intermediate Risk Prostate Cancer Testing Less Intense Treatment for Patients with a Low Gene Risk Score and Testing a More Intense Treatment for Patients with a Higher Gene Risk Score, The Guidance Trial
Prostate
Prostate
This phase III trial uses the Decipher risk score to guide therapy selection. Decipher score is based on the activity of 22 genes in prostate tumor and may predict how likely it is for recurrent prostate cancer to spread (metastasize) to other parts of the body. Decipher score in this study is used for patient selection and the two variations of treatment to be studied: intensification for higher Decipher score or de-intensification for low Decipher score. Patients with higher Decipher risk score will be assigned to the part of the study that compares the use of 6 months of the usual treatment (hormone therapy and radiation treatment) to the use of darolutamide plus the usual treatment (intensification). The purpose of this section of the study is to determine whether the additional drug can reduce the chance of cancer coming back and spreading in patients with higher Decipher score. The addition of darolutamide to the usual treatment may better control the cancer and prevent it from spreading. Alternatively, patients with low Decipher risk score will be assigned to the part of the study that compares the use of radiation treatment alone (de-intensification) to the usual approach (6 months of hormone therapy plus radiation). The purpose of this part of the study is to determine if radiation treatment alone is as effective compared to the usual treatment without affecting the chance of tumor coming back in patients with low Decipher score prostate cancer. Radiation therapy uses high energy to kill tumor cells and reduce the tumor size. Hormone therapy drugs such as darolutamide suppress or block the production or action of male hormones that play role in prostate cancer development. Effect of radiation treatment alone in patients with low Decipher score prostate cancer could be the same as the usual approach in stabilizing prostate cancer and preventing it from spreading, while avoiding the side effects associated with hormonal therapy.
Prostate
III
Kirschner, Austin
NCT05050084
VICC-NTURO23322
Comparing the Outcome of Standard Systemic Therapy Only versus Standard Systemic therapy with either Surgery or Radiation Therapy, for Patients with Advanced Prostate cancer
Prostate
Prostate
This phase III trial compare the effects of adding definitive treatment (either radiation therapy or prostate removal surgery) to standard systemic therapy in treating patients with prostate cancer that has spread to other places in the body (advanced). Removing the prostate by either surgery or radiation therapy in addition to standard systemic therapy for prostate cancer may lower the chance of the cancer growing or spreading.
Prostate
III
Schaffer, Kerry
NCT03678025
SWOGUROS1802
Testing the Addition of Total Ablative Therapy to Usual Systemic Therapy Treatment for Limited Metastatic Colorectal Cancer, ERASur Trial
This phase III trial compares the addition of total ablative therapy to the usual systemic therapy versus the usual systemic therapy alone in treating patients with advanced colorectal cancer that has spread to up to 4 body sites (limited metastatic). The usual approach for patients who are not participating in a study is treatment with intravenous (through a vein) and/or oral medications (systemic therapy) to help stop the cancer sites from getting larger and the spread of the cancer to additional body sites. The ablative local therapy will consist of very focused, intensive radiotherapy called stereotactic ablative radiotherapy (SABR) with or without surgical resection and/or microwave ablation, which is a procedure where a needle is temporarily inserted in the tumor and heat is used to destroy the cancer cells. The addition of ablative local therapy to the usual approach of systemic therapy could be more effective than usual chemotherapy alone by increasing the life of patients with limited metastatic colorectal cancer.
Not Available
III
Not Available
NCT05673148
VICC-NTGIT23268
A Study of a New Way to Treat Children and Young Adults with a Brain Tumor Called NGGCT
Multiple Cancer Types
This phase II trial studies the best approach to combine chemotherapy and radiation therapy (RT) based on the patients response to induction chemotherapy in patients with non-germinomatous germ cell tumors (NGGCT) that have not spread to other parts of the brain or body (localized). This study has 2 goals: 1) optimizing radiation for patients who respond well to induction chemotherapy to diminish spinal cord relapses, 2) utilizing higher dose chemotherapy followed by conventional RT in patients who did not respond to induction chemotherapy. Chemotherapy drugs, such as carboplatin, etoposide, ifosfamide, and thiotepa, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays or high-energy protons to kill tumor cells and shrink tumors. Studies have shown that patients with newly-diagnosed localized NGGCT, whose disease responds well to chemotherapy before receiving radiation therapy, are more likely to be free of the disease for a longer time than are patients for whom the chemotherapy does not efficiently eliminate or reduce the size of the tumor. The purpose of this study is to see how well the tumors respond to induction chemotherapy to decide what treatment to give next. Some patients will be given RT to the spine and a portion of the brain. Others will be given high dose chemotherapy and a stem cell transplant before RT to the whole brain and spine. Giving treatment based on the response to induction chemotherapy may lower the side effects of radiation in some patients and adjust the therapy to a more efficient one for other patients with localized NGGCT.
Germ Cell (Pediatrics),
Pediatrics
II
Esbenshade, Adam
NCT04684368
COGACNS2021
Thoracotomy Versus Thoracoscopic Management of Pulmonary Metastases in Patients with Osteosarcoma
Multiple Cancer Types
This phase III trial compares the effect of open thoracic surgery (thoracotomy) to thoracoscopic surgery (video-assisted thoracoscopic surgery or VATS) in treating patients with osteosarcoma that has spread to the lung (pulmonary metastases). Open thoracic surgery is a type of surgery done through a single larger incision (like a large cut) that goes between the ribs, opens up the chest, and removes the cancer. Thoracoscopy is a type of chest surgery where the doctor makes several small incisions and uses a small camera to help with removing the cancer. This trial is being done evaluate the two different surgery methods for patients with osteosarcoma that has spread to the lung to find out which is better.
Pediatrics,
Sarcoma
III
Borinstein, Scott
NCT05235165
COGAOST2031
A Study to Compare Standard Chemotherapy to Therapy with CPX-351 and/or Gilteritinib for Patients with Newly Diagnosed AML with or without FLT3 Mutations
This phase III trial compares standard chemotherapy to therapy with liposome-encapsulated daunorubicin-cytarabine (CPX-351) and/or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and/or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and/or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3/ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and/or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.
Not Available
III
Not Available
NCT04293562
COGAAML1831