Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Testing the Ability to Decrease Chemotherapy in Patients with HER2-Positive Breast Cancer Who Have No Remaining Cancer at Surgery after Limited Pre-operative Chemotherapy and HER2-Targeted Therapy

Breast

This trial studies how well paclitaxel, trastuzumab, and pertuzumab work in eliminating further chemotherapy after surgery in patients with HER2-positive stage II-IIIa breast cancer who have no cancer remaining at surgery (either in the breast or underarm lymph nodes) after pre-operative chemotherapy and HER2-targeted therapy. Drugs used in chemotherapy, such as paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Trastuzumab is a form of “targeted therapy” because it works by attaching itself to specific molecules (receptors) on the surface of tumor cells, known as HER2 receptors. When trastuzumab attaches to HER2 receptors, the signals that tell the cells to grow are blocked and the tumor cell may be marked for destruction by the body’s immune system. Pertuzumab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. Giving paclitaxel, trastuzumab, and pertuzumab may enable fewer chemotherapy drugs to be given without compromising patient outcomes compared to the usual treatment.
Breast
II
Abramson, Vandana
NCT04266249
ECOGBREEA1181

I-SPY TRIAL: Neoadjuvant and Personalized Adaptive Novel Agents to Treat Breast Cancer

Breast

The purpose of this study is to further advance the ability to practice personalized medicine by learning which new drug agents are most effective with which types of breast cancer tumors and by learning more about which early indicators of response (tumor analysis prior to surgery via magnetic resonance imaging (MRI) images along with tissue and blood samples) are predictors of treatment success.
Breast
II
Mayer, Ingrid
NCT01042379
VICCBRE1951

Bevacizumab and Anetumab Ravtansine or Paclitaxel in Treating Patients with Refractory Ovarian, Fallopian Tube, or Primary Peritoneal Cancer

Ovarian

This phase II trial studies the side effects of bevacizumab and anetumab ravtansine or paclitaxel in treating patients with ovarian, fallopian tube, or primary peritoneal cancer that does not respond to treatment (refractory). Bevacizumab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. Anetumab ravtansine is a drug that targets a protein in the body called mesothelin, which can be found in some ovarian, pancreatic and other tumors. Chemotherapy drugs, such as paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving bevacizumab and anetumab ravtansine or paclitaxel may work better in treating patients with ovarian, fallopian tube, or primary peritoneal cancer.
Ovarian
II
Crispens, Marta
NCT03587311
VICCGYN18159ET-CT

Testing the Combination of Pevonedistat with Chemotherapy for Bile Duct Cancer of the Liver

Liver

This phase II trial studies how well pevonedistat alone or in combination with chemotherapy (paclitaxel and carboplatin) works in treating patients with bile duct cancer of the liver. Pevonedistat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as paclitaxel and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This study may help the study doctors find out how well pevonedistat shrinks bile duct cancer of the liver when given alone and when in combination with paclitaxel and carboplatin.
Liver
II
Goff, Laura
NCT04175912
ECOGGIEA2187

Nivolumab and Ipilimumab in Treating Patients with Esophageal and Gastroesophageal Junction Adenocarcinoma Undergoing Surgery

Multiple Cancer Types

This phase II / III trial studies the usefulness of treatment with nivolumab and ipilimumab in addition to standard of care chemotherapy and radiation therapy in patients with esophageal and gastroesophageal junction adenocarcinoma who are undergoing surgery. Immunotherapy with antibodies, such as nivolumab and ipilimumab, may remove the brake on the body’s immune system and may interfere with the ability of tumor cells to grow and spread. Chemotherapy and radiation therapy may reduce the tumor size and the amount of normal tissue that needs to be removed during surgery. A combined treatment with nivolumab and ipilimumab, chemotherapy, and radiation therapy might be more effective in patients with esophageal and gastroesophageal junction adenocarcinoma who are undergoing surgery.
Esophageal, Gastric/Gastroesophageal
II/III
Gibson, Mike
NCT03604991
ECOGGIEA2174

Atezolizumab, Paclitaxel, Trastuzumab, and Pertuzumab in Treating Patients with HER2 Positive Breast Cancer That Is Locally Recurrent, Metastatic, or Cannot Be Removed by Surgery

Breast

This phase IIa trial studies the side effects of atezolizumab when given together with paclitaxel, trastuzumab, and pertuzumab and to see how well it works in treating patients with HER2 positive breast cancer that has come back at or near the same place as the original (primary) tumor (locally recurrent), has spread to other places in the body (metastatic), or cannot be removed by surgery. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Trastuzumab is a form of targeted therapy because it works by attaching itself to specific molecules (receptors) on the surface of cancer cells, known as HER2 receptors. When trastuzumab attaches to HER2 receptors, the signals that tell the cells to grow are blocked and the cancer cell may be marked for destruction by the body's immune system. Pertuzumab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving atezolizumab, paclitaxel, trastuzumab, and pertuzumab may work better in treating patients with HER2 positive breast cancer.
Breast
II
Mayer, Ingrid
NCT03125928
VICCBRE18179

9-ING-41 in Patients With Advanced Cancers

Multiple Cancer Types

GSK-3? is a potentially important therapeutic target in human malignancies. The Actuate 1801 Phase 1 / 2 study is designed to evaluate the safety and efficacy of 9-ING-41, a potent GSK-3? inhibitor, as a single agent and in combination with cytotoxic agents, in patients with refractory cancers.
Miscellaneous, Phase I
I/II
Davis, Elizabeth
NCT03678883
VICCPHI19127

ASP-1929 Photoimmunotherapy (PIT) Study in Recurrent Head / Neck Cancer for Patients Who Have Failed at Least Two Lines of Therapy

Head/Neck

A Phase 3, Randomized, Double-Arm, Open-Label, Controlled Trial of ASP-1929 vs Physician's Choice Standard of Care for the Treatment of Locoregional, Recurrent Head and Neck Squamous Cell Carcinoma in Patients Who Have Failed or Progressed On or After at Least Two Lines of Therapy
Head/Neck
III
Mannion, Kyle
NCT03769506
VICCHN1927


Neratinib HER Mutation Basket Study

Multiple Cancer Types

This is an open-label, multicenter, multinational, Phase 2 basket study exploring the efficacy and safety of neratinib as monotherapy or in combination with other therapies in participants with HER (EGFR, HER2) mutation-positive solid tumors.
Bladder, Colon, Esophageal, Gastric/Gastroesophageal, Neuro-Oncology, Ovarian, Urologic, Uterine
II
Mayer, Ingrid
NCT01953926
VICCMD1403

To learn more about any of our clinical
trials, call 1-800-811-8480 or complete
the online Self-Referral Form here: