Clinical Trials Search at Vanderbilt-Ingram Cancer Center
Two Studies for Patients With Unfavorable Intermediate Risk Prostate Cancer Testing Less Intense Treatment for Patients With a Low Gene Risk Score and Testing a More Intense Treatment for Patients With a Higher Gene Risk Score, The Guidance Trial
Prostate
Prostate
This phase III trial uses the Decipher risk score to guide therapy selection. Decipher score is based on the activity of 22 genes in prostate tumor and may predict how likely it is for recurrent prostate cancer to spread (metastasize) to other parts of the body. Decipher score in this study is used for patient selection and the two variations of treatment to be studied: intensification for higher Decipher score or de-intensification for low Decipher score. Patients with higher Decipher risk score will be assigned to the part of the study that compares the use of 6 months of the usual treatment (hormone therapy and radiation treatment) to the use of darolutamide plus the usual treatment (intensification). The purpose of this section of the study is to determine whether the additional drug can reduce the chance of cancer coming back and spreading in patients with higher Decipher score. The addition of darolutamide to the usual treatment may better control the cancer and prevent it from spreading. Alternatively, patients with low Decipher risk score will be assigned to the part of the study that compares the use of radiation treatment alone (de-intensification) to the usual approach (6 months of hormone therapy plus radiation). The purpose of this part of the study is to determine if radiation treatment alone is as effective compared to the usual treatment without affecting the chance of tumor coming back in patients with low Decipher score prostate cancer. Radiation therapy uses high energy to kill tumor cells and reduce the tumor size. Hormone therapy drugs such as darolutamide suppress or block the production or action of male hormones that play role in prostate cancer development. Effect of radiation treatment alone in patients with low Decipher score prostate cancer could be the same as the usual approach in stabilizing prostate cancer and preventing it from spreading, while avoiding the side effects associated with hormonal therapy.
Prostate
III
Kirschner, Austin
NCT05050084
VICC-NTURO23322
Testing Shorter Duration Radiation Therapy Versus the Usual Radiation Therapy in Patients Receiving the Usual Chemotherapy Treatment for Bladder Cancer, ARCHER Study
Bladder
Bladder
This phase III trial compares the effect of shorter term radiation (ultra-hypofractionated) therapy to the usual radiation therapy (hypofractionation) with standard of care chemotherapy, with cisplatin, gemcitabine or mitomycin and 5-fluorouracil for the treatment of patients with muscle invasive bladder cancer. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Ultra-hypofractionated radiation therapy delivers radiation over an even shorter period of time than hypofractionated radiation therapy. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of tumor cells. Gemcitabine is a chemotherapy drug that blocks the cells from making DNA and may kill tumor cells. Chemotherapy drugs, such as mitomycin-C and 5-fluorouracil (5-FU), work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ultra-hypofractionated radiation may be equally effective as hypofractionated therapy for patients with muscle invasive bladder cancer.
Bladder
III
Kirschner, Austin
NCT07097142
NRGUROGU015