Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Evexomostat Plus Alpelisib and Fulvestrant in Women With the PIK3CA Mutation With HR+/Her2- Breast Cancer

The PIK3CA gene is frequently mutated in breast cancer, leading to disease aggressiveness and
patient mortality. Alpelisib, a small molecule that inhibits the activity of the PIK3CA gene
product PI3K, has demonstrated clinical benefit in cancer patients with this gene mutation.
However, hyperglycemia, an on-target toxicity associated with alpelisib that leads to
hyperinsulinemia, limits the drug's clinical efficacy and induces high grade hyperglycemia in
patients with baseline metabolic dysfunction, insulin resistance and/or elevated HbA1c.
Restoring insulin sensitivity and reduction in circulating concentrations of insulin have
been reported to improve the activity of alpelisib.

Evexomostat (SDX-7320) is a polymer-conjugate of a novel small molecule methionine
aminopeptidase 2 (MetAP2) inhibitor that has demonstrated the ability to reduce
alpelisib-induced hyperglycemia in multiple animal experiments and has demonstrated
synergistic anti-tumor activity independent of changes in glucose or insulin. Evexomostat was
well tolerated in a Phase 1 safety study in late-stage cancer patients and showed
improvements in insulin resistance for patients that presented with baseline elevated
insulin. Overall, the most common treatment-emergent adverse events with evexomostat (TEAEs)
were fatigue (44%), decreased appetite (38%), constipation and nausea (each 28%), and
diarrhea (22%). All other TEAEs occurred at an incidence <20%.

The purpose of this study is to characterize the safety of the triplet drug combination
(alpelisib, fulvestrant plus evexomostat), to test whether evexomostat, when given in
combination with alpelisib and fulvestrant will reduce the number and severity of
hyperglycemic events and/or reduce the number of anti-diabetic medications needed to control
the hyperglycemia for patients deemed at risk for alpelisib-induced hyperglycemia (baseline
elevated HbA1c or well-controlled type 2 diabetes), and to assess preliminary anti-tumor
efficacy and changes in key biomarkers and quality of life in this patient population.
Not Available
I/II
Rexer, Brent
NCT05455619
VICCBREP2271

Total Body Irradiation and Hypofractionated Radiation Therapy with Atezolizumab and Chemotherapy for the Treatment of Extensive-Stage Small Cell Lung Cancer, TESSERACT Trial

Multiple Cancer Types

This phase I/II trial studies the side effects, safety, and effectiveness of low dose radiation to the entire body (total body irradiation [TBI]) and higher dose radiation to known areas of cancer (hypofractionated radiation therapy [H-RT]) combined with atezolizumab and chemotherapy (carboplatin & etoposide) in treating patients with small cell lung cancer that has spread to disease sites outside of the lung (extensive stage). Extensive stage disease has historically been treated with chemotherapy alone with consideration of chest (thoracic) radiation therapy for those with response to chemotherapy, as well as consideration of preventative radiation therapy to the head (prophylactic cranial irradiation). Emerging evidence supports the synergistic interactions between immunotherapy and radiation therapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill tumor cells. Combining TBI and H-RT with atezolizumab and chemotherapy may improve response to treatment.
Lung, Small Cell
I/II
Osmundson, Evan
NCT06110572
VICCTHOP2206

Split Course Adaptive Radiation Therapy and Immunotherapy with or without Chemotherapy for the Treatment of Stage IV or Locally Advanced Lung Cancer, SiCARIO Study

This phase I/II trial tests the safety and efficacy of split-course adaptive radiation therapy in combination with immunotherapy with or without chemotherapy for the treatment of patients with stage IV lung cancer or lung cancer that that has spread to nearby tissue or lymph nodes (locally advanced). Radiation therapy is a standard cancer treatment that uses high energy rays to kill cancer cells and shrink tumors. Split-course adaptive radiation therapy uses patient disease response to alter the intensity of the radiation therapy. Immunotherapy with monoclonal antibodies such as pembrolizumab, ipilimumab or nivolumab may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs like carboplatin, pemetrexed, and paclitaxel work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving split-course adaptive radiation therapy with standard treatments like immunotherapy and chemotherapy may be more effective at treating stage IV or locally advanced lung cancer than giving them alone.
Not Available
I/II
Osmundson, Evan
NCT05501665
VICCTHOP2185

Gabapentin plus Ketamine for the Prevention of Acute and Chronic Pain in Patients with Locally Advanced Head and Neck Cancer Undergoing Chemoradiation

Multiple Cancer Types

This phase I/II trial studies the side effects and best dose of a combination of gabapentin and ketamine and to see how well it works to prevent acute and chronic pain in patients receiving chemotherapy and radiation therapy (chemoradiation) for head and neck cancer that has spread to nearby tissue or lymph nodes (locally advanced). Gabapentin is a medication that is commonly used to treat nerve related pain. Specifically, it has been used to treat pain involving the mouth, throat and nasal passages in head and neck cancer patients treated with radiation. Ketamine is a type of general anesthetic that blocks pathways to the brain involved with sensing pain. This trial may help doctors determine how patients tolerate the combination of gabapentin and ketamine and to find the correct dosing for ketamine in those taking gabapentin. This will be the basis for a future, larger study to look at how effective this combination is at reducing and/or preventing pain in head and neck cancer patients.
Head/Neck, Phase I
I/II
Lockney, Natalie
NCT05156060
VICCHNP2173

A Study Evaluating the Efficacy and Safety of Multiple Treatment Combinations in Patients With Metastatic or Locally Advanced Breast Cancer

This is an umbrella study evaluating the efficacy and safety of multiple treatment
combinations in participants with metastatic or inoperable locally advanced breast cancer.

The study will be performed in two stages. During Stage 1, four cohorts will be enrolled in
parallel in this study:

Cohort 1 will consist of Programmed death-ligand 1 (PD-L1)-positive participants who have
received no prior systemic therapy for metastatic or inoperable locally advanced
triple-negative breast cancer (TNBC) (first-line [1L] PD-L1+ cohort).

Cohort 2 will consist of participants who had disease progression during or following 1L
treatment with chemotherapy for metastatic or inoperable locally-advanced TNBC and have not
received cancer immunotherapy (CIT) (second-line [2L] CIT-naive cohort).

Cohort 3 will consist of participants with locally-advanced or metastatic HR+, HER2-negative
disease with PIK3CA mutation who may or may not have had disease progression during or
following previous lines of treatment for metastatic disease (HR+cohort).

Cohort 4 will consist of participants with locally-advanced or metastatic HER2+ /HER2-low
disease with PIK3CA mutation who had disease progression on standard-of-care therapies (HER2+
/HER2-low cohort).

In each cohort, eligible participants will initially be assigned to one of several treatment
arms (Stage 1). In addition, participants in the 2L CIT-nave cohort who experience disease
progression, loss of clinical benefit, or unacceptable toxicity during Stage 1 may be
eligible to continue treatment with a different treatment combination (Stage 2), provided
Stage 2 is open for enrollment.
Not Available
I/II
Abramson, Vandana
NCT03424005
VICCBREP2126

LEGEND Study: EG-70 in NMIBC Patients BCG-Unresponsive and High-Risk NMIBC Incompletely Treated With BCG or BCG-Nave

This study will evaluate the safety and efficacy of intravesical administration of EG-70 in
the bladder and its effect on bladder tumors in patients with NMIBC.

This study study consists of two phases; a Phase 1 dose-escalation to establish safety and
recommended the phase 2 dose, followed by a Phase 2 study to establish how effective the
treatment is.

The Study will include patients with NMIBC with Cis for whom BCG therapy is unresponsive and
patients with NMIBC with Cis who are BCG-nave or inadequately treated.
Not Available
I/II
Chang, Sam
NCT04752722
VICC-DDURO24102P

Safety and Preliminary Anti-Tumor Activity of TYRA-300 in Advanced Urothelial Carcinoma and Other Solid Tumors With FGFR3 Gene Alterations

The purpose of this study is to evaluate the safety, tolerability, pharmacokinetics (PK), and
preliminary antitumor activity of TYRA-300 in cancers with FGFR3 activating gene alterations,
including locally advanced/metastatic urothelial carcinoma of the bladder and urinary tract
and other advanced solid tumors.
Not Available
I/II
Berlin, Jordan
NCT05544552
VICCPHI2261

Testing the Combination of New Anti-cancer Drug Peposertib with Avelumab and Radiation Therapy for Advanced/Metastatic Solid Tumors and Hepatobiliary Malignancies

This phase I/II trial studies the best dose and side effects of peposertib and to see how well it works with avelumab and hypofractionated radiation therapy in treating patients with solid tumors and hepatobiliary malignancies that have spread to other places in the body (advanced/metastatic). Peposertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as avelumab, may help the bodys immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving peposertib in combination with avelumab and hypofractionated radiation therapy may work better than other standard chemotherapy, hormonal, targeted, or immunotherapy medicines available in treating patients with solid tumors and hepatobiliary malignancies.
Not Available
I/II
Heumann, Thatcher
NCT04068194
VICC-NTGIT24020

A Study of BMS-986340 as Monotherapy and in Combination With Nivolumab or Docetaxel in Participants With Advanced Solid Tumors

The purpose of this study is to assess the safety, tolerability, and recommended dose(s) of
BMS-986340 as monotherapy and in combination with nivolumab or docetaxel in participants with
advanced solid tumors. This study is a first-in-human (FIH) study of BMS-986340 in
participants with advanced solid tumors.
Not Available
I/II
Berlin, Jordan
NCT04895709
VICC-DTPHI23183

Open-Label Umbrella Study To Evaluate Safety And Efficacy Of Elacestrant In Various Combination In Patients With Metastatic Breast Cancer

Breast

This is a multicenter, Phase 1b/2 trial. The phase 1b part of the trial aims to determine the
RP2D of elacestrant when administered in combination with alpelisib, everolimus, palbociclib,
and ribociclib. The Phase 2 part of the trial will evaluate the efficacy and safety of the
various combinations in patients with ER+/HER2- advanced/metastatic breast cancer.
Breast
I/II
Rexer, Brent
NCT05563220
VICC-DTBRE23166P

Clinical Trials Search CTA Inline Referral Form

To learn more about any of our clinical
trials, call 615-936-8422.