Clinical Trials Search at Vanderbilt-Ingram Cancer Center
pB1-11 and TA-HPV Vaccines Combined with Pembrolizumab for the Treatment of Recurrent or Metastatic PD-L1 and HPV Positive Oropharyngeal Cancer
Head/Neck
Head/Neck
This phase II trial tests how well pB1-11 and human papillomavirus tumor antigen (TA-HPV) vaccines in combination with pembrolizumab work in treating patients with oropharyngeal cancer that has come back (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic) and that is PD-L1 and human papillomavirus (HPV) positive. Oropharyngeal cancer is a type of head and neck cancer involving structures in the back of the throat (the oropharynx), such as the non-bony back roof of the mouth (soft palate), sides and back wall of the throat, tonsils, and back third of the tongue. Scientists have found that some strains or types of a virus called HPV can cause oropharyngeal cancer. pBI-11 is a circular deoxyribonucleic acid (DNA) (plasmid) vaccine that promotes antibody, cytotoxic T cell, and protective immune responses. TA-HPV is an investigational recombinant vaccina virus derived from a strain of the vaccina virus which was widely used for smallpox vaccination. Vaccination with this TA-HPV vaccine may stimulate the immune system to mount a cytotoxic T cell response against tumor cells positive for HPV, resulting in decreased tumor growth. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread by inhibiting the PD-1 receptor. These investigational vaccines could cause or enhance an immune response in the body against HPV, during which time the activity of pembrolizumab against oropharyngeal cancer associated with HPV may be strengthened. These drugs in combination may be more effective in increasing the ability of the immune system to fight oropharyngeal cancer than pembrolizumab alone.
Head/Neck
II
Gibson, Mike
NCT05799144
VICCHN2208
Total Body Irradiation and Hypofractionated Radiation Therapy with Atezolizumab and Chemotherapy for the Treatment of Extensive-Stage Small Cell Lung Cancer, TESSERACT Trial
Multiple Cancer Types
This phase I/II trial studies the side effects, safety, and effectiveness of low dose radiation to the entire body (total body irradiation [TBI]) and higher dose radiation to known areas of cancer (hypofractionated radiation therapy [H-RT]) combined with atezolizumab and chemotherapy (carboplatin & etoposide) in treating patients with small cell lung cancer that has spread to disease sites outside of the lung (extensive stage). Extensive stage disease has historically been treated with chemotherapy alone with consideration of chest (thoracic) radiation therapy for those with response to chemotherapy, as well as consideration of preventative radiation therapy to the head (prophylactic cranial irradiation). Emerging evidence supports the synergistic interactions between immunotherapy and radiation therapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill tumor cells. Combining TBI and H-RT with atezolizumab and chemotherapy may improve response to treatment.
Lung,
Small Cell
I/II
Osmundson, Evan
NCT06110572
VICCTHOP2206
A Study to Evaluate the Safety and Tolerability of TOS-358 in Adults With Select Solid Tumors
Multiple Cancer Types
The goal of this clinical trial is to evaluate the safety of TOS-358 in adults with select
solid tumors who meet study enrollment criteria. The main questions it aims to answer are:
1. what is the maximum tolerated dose and recommended dose for phase 2?
2. how safe and tolerable is TOS-358 at different dose levels when taken orally once or
twice per day?
solid tumors who meet study enrollment criteria. The main questions it aims to answer are:
1. what is the maximum tolerated dose and recommended dose for phase 2?
2. how safe and tolerable is TOS-358 at different dose levels when taken orally once or
twice per day?
Breast,
Cervical,
Gastrointestinal,
Gynecologic,
Head/Neck,
Lung,
Phase I,
Urologic
I
Berlin, Jordan
NCT05683418
VICC-DTPHI23103
Phase 1b Combo w/ Ribociclib and Alpelisib
Multiple Cancer Types
This is a Phase 1b open-label, 2-part study in 2 treatment groups. The 2 treatment groups are
as follows:
Treatment Group 1: OP-1250 in combination with ribociclib (KISQALI, Novartis Pharmaceuticals
Corporation).
Treatment Group 2: OP-1250 in combination with alpelisib (PIQRAY, Novartis Pharmaceuticals
Corporation).
as follows:
Treatment Group 1: OP-1250 in combination with ribociclib (KISQALI, Novartis Pharmaceuticals
Corporation).
Treatment Group 2: OP-1250 in combination with alpelisib (PIQRAY, Novartis Pharmaceuticals
Corporation).
Breast,
Phase I
I
Abramson, Vandana
NCT05508906
VICCBREP2267
Venetoclax in Children With Relapsed Acute Myeloid Leukemia (AML)
Multiple Cancer Types
A study to evaluate if the randomized addition of venetoclax to a chemotherapy backbone
(fludarabine/cytarabine/gemtuzumab ozogamicin [GO]) improves survival of
children/adolescents/young adults with acute myeloid leukemia (AML) in 1st relapse who are
unable to receive additional anthracyclines, or in 2nd relapse.
(fludarabine/cytarabine/gemtuzumab ozogamicin [GO]) improves survival of
children/adolescents/young adults with acute myeloid leukemia (AML) in 1st relapse who are
unable to receive additional anthracyclines, or in 2nd relapse.
Pediatric Leukemia,
Pediatrics
III
Smith, Christine
NCT05183035
VICCPED2237
Avelumab with Binimetinib, Sacituzumab Govitecan, or Liposomal Doxorubicin in Treating Patients with Stage IV or Unresectable, Recurrent Triple Negative Breast Cancer
Breast
Breast
This phase II trial studies how well the combination of avelumab with liposomal doxorubicin with or without binimetinib, or the combination of avelumab with sacituzumab govitecan works in treating patients with triple negative breast cancer that is stage IV or is not able to be removed by surgery (unresectable) and has come back (recurrent). Immunotherapy with checkpoint inhibitors like avelumab require activation of the patient's immune system. This trial includes a two week induction or lead-in of medications that can stimulate the immune system. It is our hope that this induction will improve the response to immunotherapy with avelumab. One treatment, sacituzumab govitecan, is a monoclonal antibody called sacituzumab linked to a chemotherapy drug called SN-38. Sacituzumab govitecan is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of tumor cells, known as TROP2 receptors, and delivers SN-38 to kill them. Another treatment, liposomal doxorubicin, is a form of the anticancer drug doxorubicin that is contained in very tiny, fat-like particles. It may have fewer side effects and work better than doxorubicin, and may enhance factors associated with immune response. The third medication is called binimetinib, which may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth, and may help activate the immune system. It is not yet known whether giving avelumab in combination with liposomal doxorubicin with or without binimetinib, or the combination of avelumab with sacituzumab govitecan will work better in treating patients with triple negative breast cancer.
Breast
II
Abramson, Vandana
NCT03971409
VICCBRE1987
A Study of ASP3082 in Adults With Previously Treated Solid Tumors
Phase I
Phase I
Genes contain genetic code which tell the body which proteins to make. Many types of cancer
are caused by changes, or mutations, in a gene called KRAS. Researchers are looking for ways
to stop the actions of abnormal proteins made from the mutated KRAS gene. The so-called G12D
mutation in the KRAS gene is common in people with some solid tumors.
ASP3082 is a potential new treatment for certain solid tumors in people who have the G12D
mutation in their KRAS gene. Before ASP3082 is available as a treatment, the researchers need
to understand how it is processed by and acts upon the body. This information will help find
a suitable dose and to check for potential medical problems from the treatment.
People in this study will be adults with locally advanced, unresectable or metastatic solid
tumors with the G12D mutation in their KRAS gene (G12D mutation). Locally advanced means the
cancer has spread to nearby tissue. Unresectable means the cancer cannot be removed by
surgery. Metastatic means the cancer has spread to other parts of the body. They will have
been previously treated with standard therapies or refused to receive those treatments. In
the European Union (EU) and South Korea, people who have refused to receive treatment with
standard therapies cannot take part.
The main aims of the study are: to check the safety of ASP3082 by itself and together with
cetuximab (a common cancer medicine), how well it is tolerated, and to find a suitable dose
of ASP3082 by itself and together with cetuximab.
This is an open-label study. This means that people in this study and clinic staff will know
that they will receive ASP3082.
This study will be in 2 parts. In Part 1, different small groups of people will receive lower
to higher doses of ASP3082, by itself, or together with cetuximab. Only people with
colorectal cancer will receive ASP3082 together with cetuximab. Any medical problems will be
recorded at each dose. This is done to find suitable doses of ASP3082 by itself or together
with cetuximab to use in Part 2 of the study. The first group will receive the lowest dose of
ASP3082. A medical expert panel will check the results from this group and decide if the next
group can receive a higher dose of ASP3082. The panel will do this for each group until all
groups have received ASP3082 (by itself or together with cetuximab) or until suitable doses
have been selected for Part 2.
In Part 2, other different small groups of people will receive ASP3082 by itself or together
with cetuximab, with the most suitable doses worked out from Part 1. This will help find a
more accurate dose of ASP3082 to use in future studies.
ASP3082, and cetuximab (if used), will be given through a vein. This is called an infusion.
Each treatment cycle is 21 days long. They will continue treatment until: they have medical
problems from the treatment they can't tolerate; their cancer gets worse; they start other
cancer treatment; they ask to stop treatment; they do not come back for treatment.
People will visit the clinic on certain days during their treatment, with extra visits during
the first 2 cycles of treatment. During these visits, the study doctors will check for any
medical problems from ASP3082 by itself or together with cetuximab. At some visits, other
checks will include a medical examination, echocardiogram (ECHO) or multigated acquisition
(MUGA) scan, blood and urine tests and vital signs. Vital signs include temperature, pulse,
breathing rate, and blood pressure. (Blood oxygen levels will also be checked for people
treated with ASP3082 together with cetuximab.) Tumor samples will be taken during certain
visits during treatment and when treatment has finished.
People will visit the clinic within 7 days after stopping treatment. The study doctors will
check for any medical problems from ASP3082 by itself or together with cetuximab. Other
checks will include a medical examination, echocardiogram (ECHO) or multigated acquisition
(MUGA) scan, urine and blood tests and vital signs. After this, people will continue to visit
the clinic every 9 weeks. This is to check the condition of their cancer. They will do this
until 45 weeks after treatment stopped, or if their cancer is worse, they start other cancer
treatment, they ask to stop treatment, or they do not come back for treatment.
Also, people may visit the clinic at 30 days and 90 days after stopping treatment. At the
30-day visit, the study doctors will check for any medical problems from ASP3082 by itself or
together with cetuximab. People will have their vital signs checked and have some bloo
are caused by changes, or mutations, in a gene called KRAS. Researchers are looking for ways
to stop the actions of abnormal proteins made from the mutated KRAS gene. The so-called G12D
mutation in the KRAS gene is common in people with some solid tumors.
ASP3082 is a potential new treatment for certain solid tumors in people who have the G12D
mutation in their KRAS gene. Before ASP3082 is available as a treatment, the researchers need
to understand how it is processed by and acts upon the body. This information will help find
a suitable dose and to check for potential medical problems from the treatment.
People in this study will be adults with locally advanced, unresectable or metastatic solid
tumors with the G12D mutation in their KRAS gene (G12D mutation). Locally advanced means the
cancer has spread to nearby tissue. Unresectable means the cancer cannot be removed by
surgery. Metastatic means the cancer has spread to other parts of the body. They will have
been previously treated with standard therapies or refused to receive those treatments. In
the European Union (EU) and South Korea, people who have refused to receive treatment with
standard therapies cannot take part.
The main aims of the study are: to check the safety of ASP3082 by itself and together with
cetuximab (a common cancer medicine), how well it is tolerated, and to find a suitable dose
of ASP3082 by itself and together with cetuximab.
This is an open-label study. This means that people in this study and clinic staff will know
that they will receive ASP3082.
This study will be in 2 parts. In Part 1, different small groups of people will receive lower
to higher doses of ASP3082, by itself, or together with cetuximab. Only people with
colorectal cancer will receive ASP3082 together with cetuximab. Any medical problems will be
recorded at each dose. This is done to find suitable doses of ASP3082 by itself or together
with cetuximab to use in Part 2 of the study. The first group will receive the lowest dose of
ASP3082. A medical expert panel will check the results from this group and decide if the next
group can receive a higher dose of ASP3082. The panel will do this for each group until all
groups have received ASP3082 (by itself or together with cetuximab) or until suitable doses
have been selected for Part 2.
In Part 2, other different small groups of people will receive ASP3082 by itself or together
with cetuximab, with the most suitable doses worked out from Part 1. This will help find a
more accurate dose of ASP3082 to use in future studies.
ASP3082, and cetuximab (if used), will be given through a vein. This is called an infusion.
Each treatment cycle is 21 days long. They will continue treatment until: they have medical
problems from the treatment they can't tolerate; their cancer gets worse; they start other
cancer treatment; they ask to stop treatment; they do not come back for treatment.
People will visit the clinic on certain days during their treatment, with extra visits during
the first 2 cycles of treatment. During these visits, the study doctors will check for any
medical problems from ASP3082 by itself or together with cetuximab. At some visits, other
checks will include a medical examination, echocardiogram (ECHO) or multigated acquisition
(MUGA) scan, blood and urine tests and vital signs. Vital signs include temperature, pulse,
breathing rate, and blood pressure. (Blood oxygen levels will also be checked for people
treated with ASP3082 together with cetuximab.) Tumor samples will be taken during certain
visits during treatment and when treatment has finished.
People will visit the clinic within 7 days after stopping treatment. The study doctors will
check for any medical problems from ASP3082 by itself or together with cetuximab. Other
checks will include a medical examination, echocardiogram (ECHO) or multigated acquisition
(MUGA) scan, urine and blood tests and vital signs. After this, people will continue to visit
the clinic every 9 weeks. This is to check the condition of their cancer. They will do this
until 45 weeks after treatment stopped, or if their cancer is worse, they start other cancer
treatment, they ask to stop treatment, or they do not come back for treatment.
Also, people may visit the clinic at 30 days and 90 days after stopping treatment. At the
30-day visit, the study doctors will check for any medical problems from ASP3082 by itself or
together with cetuximab. People will have their vital signs checked and have some bloo
Phase I
I
Berlin, Jordan
NCT05382559
VICCPHI2207
Talazoparib for the Treatment of BRCA 1/2 Mutant Metastatic Breast Cancer
Breast
Breast
This phase II trial studies how well talazoparib works for the treatment of breast cancer with a BRCA 1 or BRCA 2 gene mutation that has spread to other places in the body (metastatic). Talazoparib is a study drug that inhibits (stops) the normal activity of certain proteins called poly (ADP-ribose) polymerases also called PARPs. PARPs are proteins that help repair deoxyribonucleic acid (DNA) mutations. PARP inhibitors, such as talazoparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. PARPs are needed to repair mistakes that can happen in DNA when cells divide. If the mistakes are not repaired, the defective cell will usually die and be replaced. Cells with mistakes in their DNA that do not die can become tumor cells. Tumor cells may be killed by a study drug, like talazoparib, that stops the normal activity of PARPs. Talazoparib may be effective in the treatment of metastatic breast cancer with BRCA1 or BRCA2 mutations.
Breast
II
Abramson, Vandana
NCT03990896
VICCBRE2265
A Trial Comparing Unrelated Donor BMT With IST for Pediatric and Young Adult Patients With Severe Aplastic Anemia (TransIT, BMT CTN 2202)
Pediatrics
Pediatrics
Severe Aplastic Anemia (SAA) is a rare condition in which the body stops producing enough new
blood cells. SAA can be cured with immune suppressive therapy or a bone marrow transplant.
Regular treatment for patients with aplastic anemia who have a matched sibling (brother or
sister), or family donor is a bone marrow transplant. Patients without a matched family donor
normally are treated with immune suppressive therapy (IST). Match unrelated donor (URD) bone
marrow transplant (BMT) is used as a secondary treatment in patients who did not get better
with IST, had their disease come back, or a new worse disease replaced it (like leukemia).
This trial will compare time from randomization to failure of treatment or death from any
cause of IST versus URD BMT when used as initial therapy to treat SAA.
The trial will also assess whether health-related quality of life and early markers of
fertility differ between those randomized to URD BMT or IST, as well as assess the presence
of marrow failure-related genes and presence of gene mutations associated with MDS or
leukemia and the change in gene signatures after treatment in both study arms.
This study treatment does not include any investigational drugs. The medicines and procedures
in this study are standard for treatment of SAA.
blood cells. SAA can be cured with immune suppressive therapy or a bone marrow transplant.
Regular treatment for patients with aplastic anemia who have a matched sibling (brother or
sister), or family donor is a bone marrow transplant. Patients without a matched family donor
normally are treated with immune suppressive therapy (IST). Match unrelated donor (URD) bone
marrow transplant (BMT) is used as a secondary treatment in patients who did not get better
with IST, had their disease come back, or a new worse disease replaced it (like leukemia).
This trial will compare time from randomization to failure of treatment or death from any
cause of IST versus URD BMT when used as initial therapy to treat SAA.
The trial will also assess whether health-related quality of life and early markers of
fertility differ between those randomized to URD BMT or IST, as well as assess the presence
of marrow failure-related genes and presence of gene mutations associated with MDS or
leukemia and the change in gene signatures after treatment in both study arms.
This study treatment does not include any investigational drugs. The medicines and procedures
in this study are standard for treatment of SAA.
Pediatrics
III
Connelly, James
NCT05600426
VICCPED2295
A Study to Evaluate INCA033989 Administered in Participants With Myeloproliferative Neoplasms
Leukemia
Leukemia
This study is being conducted to evaluate the safety, tolerability, dose-limiting toxicity
(DLT) and determine the maximum tolerated dose (MTD) and/or recommended dose(s) for expansion
(RDE) of INCA033989 administered in participants with myeloproliferative neoplasms.
(DLT) and determine the maximum tolerated dose (MTD) and/or recommended dose(s) for expansion
(RDE) of INCA033989 administered in participants with myeloproliferative neoplasms.
Leukemia
I
Mohan, Sanjay
NCT06034002
VICC-DTHEM23416P