Skip to main content

Displaying 71 - 80 of 220

Study of Navtemadlin add-on to Ruxolitinib in JAK Inhibitor-Nave Patients With Myelofibrosis Who Have a Suboptimal Response to Ruxolitinib

Hematologic

This clinical trial is evaluating whether addition of navtemadlin to ruxolitinib treatment will provide more clinical benefit than ruxolitinib alone for patients with Myelofibrosis who have a suboptimal response to ruxolitinib treatment alone.

Subjects will start by receiving ruxolitinib alone in the run-in period. Those who demostrate a suboptimal response from ruxolitinib alone will then be randomized 2:1 to receive navtemadlin or navtemadlin placebo as add-on treatment to their ongoing ruxolitinib. Randomized means that subjects will be assigned to a group by chance, like a flip of a coin. The study is blinded, meaning the subjects, doctors, central endpoint assessors and sponsor will not know which add on treatment (navtemadlin or navtemadlin placebo) the subject is receiving.
Hematologic
III
Mohan, Sanjay
NCT06479135
VICC-DTHEM24136

Evaluation of RBS2418 in Subjects With Advanced, Metastatic Solid Tumors

Phase I

RBS2418 (investigational product) is a specific immune modulator, working through ectonucleotide pyrophosphatase/phosphodiesterase I (ENPP1), designed to lead to anti-tumor immunity by increasing endogenous 2'-3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) and adenosine triphosphate (ATP levels) and reducing adenosine production in the tumors. RBS2418 has the potential to be an important therapeutic option for subjects both as monotherapy and in combination with other cancer treatments including monotherapy and in combination with other cancer treatments including immunotherapy or chemotherapy. This study is an open-label, multi-site Phase 1a/1b study of RBS2418, a selective ENPP1 inhibitor, in combination with pembrolizumab or other approved anticancer therapies or as a monotherapy in subjects with advanced unresectable, recurrent or metastatic tumors. The phase 1a (dose escalation phase) has been completed. The Phase 1b expansion phase of the study has been increased in size and scope.
Phase I
I
Berlin, Jordan
NCT05270213
VICCPHI2289

Neoadjuvant Darolutamide Alone or in Combination With Standard Therapy for Stage II-IIIA, AR+, TNBC

Breast

This phase II trial compares the effect of adding darolutamide to standard therapy versus standard therapy alone before surgery for the treatment of patients with stage II-IIIA androgen receptor positive triple-negative breast carcinoma. Standard therapy before surgery for triple-negative breast cancer typically consists of a combination of chemotherapy and immunotherapy drugs. Chemotherapy drugs, such as carboplatin, paclitaxel, doxorubicin and cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Darolutamide is in a class of medications called androgen receptor inhibitors. It works by blocking the effects of androgen (a male reproductive hormone) to stop the growth and spread of tumor cells. Giving darolutamide in combination with standard therapy before surgery may make the tumor smaller and may reduce the amount of normal tissue that needs to be removed.
Breast
II
Abramson, Vandana
NCT07016399
VICC-VCBRE23490

Targeted Alpha-Particle Therapy for Advanced Somatostatin Receptor Type 2 (SSTR2) Positive Neuroendocrine Tumors

Multiple Cancer Types

This study is Phase I/IIa First-in-Human Study of \[212Pb\]VMT--NET Targeted Alpha-Particle Therapy for Advanced SSTR2 Positive Neuroendocrine Tumors
Neuroendocrine, Phase I
I/II
Ramirez, Robert
NCT05636618
VICC-DTPHI23045

A Phase 1/1b Study of IAM1363 in HER2 Cancers

Miscellaneous

This is a Phase 1/1b open-label, multi-center dose escalation and dose optimization study designed to evaluate the safety and preliminary efficacy of IAM1363 in participants with advanced cancers that harbor HER2 alterations.
Miscellaneous
I
Kennedy, Laura
NCT06253871
VICCPHI24527

Inotuzumab Ozogamicin in Treating Younger Patients With B-Lymphoblastic Lymphoma or Relapsed or Refractory CD22 Positive B Acute Lymphoblastic Leukemia

This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
Not Available
II
Not Available
NCT02981628
COGAALL1621

Study Assessing Activity of Intravenous (IV) Etentamig Monotherapy Versus Standard Available Therapies in Adult Participants With Relapsed or Refractory Multiple Myeloma

Multiple myeloma (MM) is a cancer of the blood's plasma cells. The cancer is typically found in the bones and bone marrow (the spongy tissue inside of the bones) and can cause bone pain, fractures, infections, weaker bones, and kidney failure. Treatments are available, but MM can come back (relapsed) or may not get better (refractory) with treatment. This is a study to determine change in disease symptoms of etentamig compared to standard available therapies in adult participants with relapsed/refractory (R/R) MM.

Etentamig is an investigational drug being developed for the treatment of R/R MM. This study is broken into 2 Arms; Arm A and Arm B. In Arm A, participants will receive etentamig as a monotherapy. In Arm B, participants will receive the standard available therapy (SAT) identified by the Investigator during screening, in accordance with the local (or applicable) approved label, package insert, summary of product characteristics, and/or the institutional guidelines, as applicable. Around 380 adult participants with relapsed/refractory multiple myeloma will be enrolled at approximately 140 sites across the world.

In Arm A participants will receive etentamig as an infusion into the vein in 28 day cycles, during the 3.5 year study duration. In Arm B, participants will receive the SAT identified by the Investigator during screening, in accordance with the local (or applicable) approved label, package insert, summary of product characteristics, and/or the institutional guidelines, as applicable, during the 3.5 year study duration.

There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at a hospital or clinic. The effect of the treatment will be checked by medical assessments, blood tests, checking for side effects and questionnaires.
Not Available
III
Baljevic, Muhamed
NCT06158841
VICC-DTPCL23493

Comparing the Combination of Selinexor-Daratumumab-Velcade-Dexamethasone (Dara-SVD) With the Usual Treatment (Dara-RVD) for High-Risk Newly Diagnosed Multiple Myeloma

This phase II trial compares the combination of selinexor, daratumumab and hyaluronidase-fihj (daratumumab), velcade (bortezomib), and dexamethasone (Dara-SVD) to the usual treatment of daratumumab, lenalidomide, bortezomib, and dexamethasone (Dara-RVD) in treating patients with high-risk newly diagnosed multiple myeloma. Selinexor is in a class of medications called selective inhibitors of nuclear export (SINE). It works by blocking a protein called CRM1, which may keep cancer cells from growing and may kill them. Daratumumab is in a class of medications called monoclonal antibodies. It binds to a protein called CD38, which is found on some types of immune cells and cancer cells, including myeloma cells. Daratumumab may block CD38 and help the immune system kill cancer cells. Bortezomib blocks several molecular pathways in a cell and may cause cancer cells to die. It is a type of proteasome inhibitor and a type of dipeptidyl boronic acid. Dexamethasone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. Lenalidomide is in a class of medications called immunomodulatory agents. It works by helping the bone marrow to produce normal blood cells and by killing abnormal cells in the bone marrow. The drugs daratumumab, lenalidomide, bortezomib, dexamethasone and selinexor are already approved by the Food and Drug Administration for use in myeloma. But selinexor is not used until myeloma comes back (relapses) after initial treatment. Giving selinexor in the initial treatment may be a superior type of treatment for patients with high-risk newly diagnosed multiple myeloma.
Not Available
II
Baljevic, Muhamed
NCT06169215
VICC-NTPCL23525

Comparing Sentinel Lymph Node (SLN) Biopsy With Standard Neck Dissection for Patients With Early-Stage Oral Cavity Cancer

Head/Neck

This phase II/III trial studies how well sentinel lymph node biopsy works and compares sentinel lymph node biopsy surgery to standard neck dissection as part of the treatment for early-stage oral cavity cancer. Sentinel lymph node biopsy surgery is a procedure that removes a smaller number of lymph nodes from your neck because it uses an imaging agent to see which lymph nodes are most likely to have cancer. Standard neck dissection, such as elective neck dissection, removes many of the lymph nodes in your neck. Using sentinel lymph node biopsy surgery may work better in treating patients with early-stage oral cavity cancer compared to standard elective neck dissection.
Head/Neck
II/III
Topf, Michael
NCT04333537
NRGHN006

Combining Radiation Therapy With Immunotherapy for the Treatment of Metastatic Squamous Cell Carcinoma of the Head and Neck

This phase III trial compares pembrolizumab with radiation therapy to pembrolizumab without radiation therapy (standard therapy) given after pembrolizumab plus chemotherapy for the treatment of patients with squamous cell carcinoma of the head and neck that has spread from where it first started (primary site) to other places in the body (metastatic). Pembrolizumab is a type of immunotherapy that stimulates the body's immune system to fight cancer cells. Pembrolizumab targets and blocks a protein called PD-1 on the surface of certain immune cells called T-cells. Blocking PD-1 triggers the T-cells to find and kill cancer cells. Radiation therapy uses high-powered rays to kill cancer cells. Giving radiation with pembrolizumab may be more effective at treating patients with metastatic head and neck cancer than the standard therapy of giving pembrolizumab alone.
Not Available
III
Choe, Jennifer
NCT05721755
ECOGHNEA3211