Clinical Trials Search at Vanderbilt-Ingram Cancer Center
A Study to Compare Standard Therapy to Treat Hodgkin Lymphoma to the Use of Two Drugs, Brentuximab Vedotin and Nivolumab
Multiple Cancer Types
This phase III trial compares the effect of adding immunotherapy (brentuximab vedotin and nivolumab) to standard treatment (chemotherapy with or without radiation) to the standard treatment alone in improving survival in patients with stage I and II classical Hodgkin lymphoma. Brentuximab vedotin is in a class of medications called antibody-drug conjugates. It is made of a monoclonal antibody called brentuximab that is linked to a cytotoxic agent called vedotin. Brentuximab attaches to CD30 positive lymphoma cells in a targeted way and delivers vedotin to kill them. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs such as doxorubicin hydrochloride, bleomycin sulfate, vinblastine sulfate, dacarbazine, and procarbazine hydrochloride work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Cyclophosphamide is in a class of medications called alkylating agents. It works by damaging the cells deoxyribonucleic acid (DNA) and may kill cancer cells. It may also lower the bodys immune response. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill cancer cells. Vincristine is in a class of medications called vinca alkaloids. It works by stopping cancer cells from growing and dividing and may kill them. Prednisone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Adding immunotherapy to the standard treatment of chemotherapy with or without radiation may increase survival and/or fewer short-term or long-term side effects in patients with classical Hodgkin lymphoma compared to the standard treatment alone.
Pediatric Lymphoma,
Pediatrics
III
Smith, Christine
NCT05675410
VICC-NTPED23306
Accelerated or Standard BEP Chemotherapy in Treating Patients with Intermediate or Poor-Risk Metastatic Germ Cell Tumors
Germ Cell (Pediatrics)
Germ Cell (Pediatrics)
This phase III trial compares the effect of an accelerated schedule of bleomycin sulfate, etoposide phosphate, and cisplatin (BEP) chemotherapy to the standard schedule of BEP chemotherapy for the treatment of patients with intermediate or poor-risk germ cell tumors that have spread to other places in the body (metastatic). Drugs used in chemotherapy, such as bleomycin sulfate, etoposide phosphate, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BEP chemotherapy on a faster, or accelerated schedule may work better with fewer side effects in treating patients with intermediate or poor-risk metastatic germ cell tumors compared to the standard schedule.
Germ Cell (Pediatrics)
III
Borinstein, Scott
NCT02582697
COGAGCT1532
Evaluating the Addition of the Immunotherapy Drug Atezolizumab to Standard Chemotherapy Treatment for Advanced or Metastatic Neuroendocrine Carcinomas That Originate Outside the Lung
Neuroendocrine
Neuroendocrine
This phase II/III trial compares the effect of immunotherapy with atezolizumab in combination with standard chemotherapy with a platinum drug (cisplatin or carboplatin) and etoposide versus standard therapy alone for the treatment of poorly differentiated extrapulmonary (originated outside the lung) neuroendocrine cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) or that has spread from where it first started (primary site) to other places in the body (metastatic). The other aim of this trial is to compare using atezolizumab just at the beginning of treatment versus continuing it beyond the initial treatment. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cisplatin and carboplatin are in a class of medications known as platinum-containing compounds that work by killing, stopping or slowing the growth of cancer cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair, and it may kill cancer cells. Giving atezolizumab in combination with a platinum drug (cisplatin or carboplatin) and etoposide may work better in treating patients with poorly differentiated extrapulmonary neuroendocrine cancer compared to standard therapy with a platinum drug (cisplatin or carboplatin) and etoposide alone.
Neuroendocrine
II/III
Ramirez, Robert
NCT05058651
SWOGGIS2012
Testing the Addition of Abemaciclib to Olaparib for Women with Recurrent Ovarian Cancer
This phase I/Ib trial identifies the side effects and best dose of abemaciclib when given together with olaparib in treating patients with ovarian cancer that responds at first to treatment with drugs that contain the metal platinum but then comes back within a certain period (recurrent platinum-resistant). Abemaciclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Olaparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep tumor cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Adding abemaciclib to olaparib may work better to treat recurrent platinum-resistant ovarian cancer.
Not Available
I
Crispens, Marta
NCT04633239
VICC-NTGYN24186P
Palbociclib and Binimetinib in RAS-Mutant Cancers, A ComboMATCH Treatment Trial
This phase II clinical trial evaluates the effectiveness of palbociclib and binimetinib in treating patients with RAS-mutated cancers. Palbociclib and binimetinib are both in a class of medications called kinase inhibitors. They work by blocking the action of abnormal proteins that signals cancer cells to multiply. This trial may help researchers understand if giving the combination of palbociclib and binimetinib can help improve the amount of time before the cancer grows in patients with patients with low grade serous ovarian cancer who have certain changes in the tumor DNA. This trial may also help researchers understand if giving the combination of palbociclib and binimetinib can help improve outcomes among patients with low grade serous ovarian cancer who have previously received a MEK inhibitor. For patients with other tumors, with the exception of lung cancer, colon cancer, melanoma and low grade serous ovarian cancers, this trial may help researchers understand if giving the combination of palbociclib and binimetinib can improve the clinical outcome of survival without progression in patients who have certain changes in their tumors DNA.
Not Available
II
Choe, Jennifer
NCT05554367
ECOGMDEAY191-A3
Long-term Safety and Efficacy Extension Study for Participants With Advanced Tumors Who Are Currently on Treatment or in Follow-up in a Pembrolizumab (MK-3475) Study (MK-3475-587/KEYNOTE-587)
The purpose of this study is to evaluate the long-term safety and efficacy of pembrolizumab
(MK-3475) in participants from previous Merck pembrolizumab-based parent studies who
transition into this extension study.
This study will consist of three phases: 1) First Course Phase, 2) Survival Follow-up Phase
or 3) Second Course Phase. Each participant will transition to this extension study in one of
the following three phases, depending on the study phase they were in at the completion of
the parent study. Participants who were in the First Course Phase of study treatment with
pembrolizumab or lenvatinib in their parent study will enter the First Course Phase of this
study and complete up to 35 doses or more every 3 weeks (Q3W) or 17 doses or more every 6
weeks (Q6W) of study treatment with pembrolizumab or a pembrolizumab-based combination or
lenvatinib according to arm assignment. Participants who were in the Follow-up Phase in the
parent study (post-treatment or Survival Follow-up Phase) will enter the Survival Follow-up
Phase of this study. Participants who were in the Second Course Phase in their parent study
will enter Second Course Phase of this study and complete up to 17 doses Q3W or 8 doses Q6W
of study treatment with pembrolizumab or a pembrolizumab-based combination according to arm
assignment.
Any participant originating from a parent trial where crossover to pembrolizumab was
permitted upon disease progression may be eligible for 35 doses as Q3W or 17 doses Q6W of
pembrolizumab (approximately 2 years), if they progress while on the control arm and
pembrolizumab is approved for the indication in the country where the potential eligible
crossover participant is being evaluated.
(MK-3475) in participants from previous Merck pembrolizumab-based parent studies who
transition into this extension study.
This study will consist of three phases: 1) First Course Phase, 2) Survival Follow-up Phase
or 3) Second Course Phase. Each participant will transition to this extension study in one of
the following three phases, depending on the study phase they were in at the completion of
the parent study. Participants who were in the First Course Phase of study treatment with
pembrolizumab or lenvatinib in their parent study will enter the First Course Phase of this
study and complete up to 35 doses or more every 3 weeks (Q3W) or 17 doses or more every 6
weeks (Q6W) of study treatment with pembrolizumab or a pembrolizumab-based combination or
lenvatinib according to arm assignment. Participants who were in the Follow-up Phase in the
parent study (post-treatment or Survival Follow-up Phase) will enter the Survival Follow-up
Phase of this study. Participants who were in the Second Course Phase in their parent study
will enter Second Course Phase of this study and complete up to 17 doses Q3W or 8 doses Q6W
of study treatment with pembrolizumab or a pembrolizumab-based combination according to arm
assignment.
Any participant originating from a parent trial where crossover to pembrolizumab was
permitted upon disease progression may be eligible for 35 doses as Q3W or 17 doses Q6W of
pembrolizumab (approximately 2 years), if they progress while on the control arm and
pembrolizumab is approved for the indication in the country where the potential eligible
crossover participant is being evaluated.
Not Available
III
Not Available
NCT03486873
VICCMD1932
ILND Surgery Alone or after Chemotherapy with or without Radiation Therapy in Treating Patients with Advanced Penile Cancer
Miscellaneous
Miscellaneous
This phase III trial studies how well inguinal lymph node dissection (ILND) surgery alone or after chemotherapy with or without intensity-modulated radiation therapy works in treating patients with penile cancer that has spread to other places in the body. Surgery is used to remove the lymph nodes and may be able to cure the cancer. Drugs used in chemotherapy, such as paclitaxel, ifosfamide, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Intensity-modulated radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. It is not known whether having surgery after chemotherapy with or without radiation therapy is better than having surgery alone.
Miscellaneous
III
Rini, Brian
NCT02305654
ECOGUROEA8134
Study to Compare Axicabtagene Ciloleucel With Standard of Care Therapy as First-line Treatment in Participants With High-risk Large B-cell Lymphoma
Lymphoma
Lymphoma
The goal of this clinical study is to compare the study drug, axicabtagene ciloleucel, versus
standard of care (SOC) in first-line therapy in participants with high-risk large B-cell
lymphoma.
standard of care (SOC) in first-line therapy in participants with high-risk large B-cell
lymphoma.
Lymphoma
III
Jallouk, Andrew
NCT05605899
VICCCTT2298
Study of LY3537982 in Cancer Patients With a Specific Genetic Mutation (KRAS G12C)
The purpose of this study is to find out whether the study drug, LY3537982, is safe and
effective in cancer patients who have a specific genetic mutation (KRAS G12C). Patients must
have already received or were not able to tolerate the standard of care, except for specific
groups who have not had cancer treatment. The study will last up to approximately 4 years.
effective in cancer patients who have a specific genetic mutation (KRAS G12C). Patients must
have already received or were not able to tolerate the standard of care, except for specific
groups who have not had cancer treatment. The study will last up to approximately 4 years.
Not Available
I/II
Not Available
NCT04956640
VICCTHOP2155
A Study of Oral TP-3654 in Patients With Myelofibrosis
Leukemia
Leukemia
This study is a Phase 1/2, multicenter, dose-escalation, open-label trial to assess safety,
tolerability, pharmacokinetics and pharmacodynamics of TP-3654 in patients with intermediate
or high-risk primary or secondary MF.
tolerability, pharmacokinetics and pharmacodynamics of TP-3654 in patients with intermediate
or high-risk primary or secondary MF.
Leukemia
I/II
Kishtagari, Ashwin
NCT04176198
VICC-DTHEM23002P