Skip to main content
This phase II trial tests how well giving durvalumab with standard chemotherapy, gemcitabine and cisplatin, before surgery works in treating patients with high risk liver cancer (cholangiocarcinoma) that can be removed by surgery (resectable). Durvalumab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as gemcitabine and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving durvalumab with gemcitabine and cisplatin before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed in patients with high risk resectable cholangiocarcinoma.
This phase II trial tests how well nivolumab in combination with chemotherapy drugs along with radiation therapy works in treating patients with nasopharyngeal cancer. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as gemcitabine and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Researchers want to find out what effects, good and/or bad, adding nivolumab to chemotherapy has on patients with newly diagnosed NPC. In addition, they want to find out if children with NPC may be treated with less radiation therapy and whether this decreases the side effects of therapy.
The primary objective of this phase IIb/III study is to evaluate whether the combination of
lurbinectedin plus doxorubicin given as first line treatment for metastatic leiomyosarcoma
(LMS) prolongs the progression-free survival (PFS) by Independent Review Committee (IRC) when
compared to doxorubicin administered as a single agent.
This phase II trial compares the combination of selinexor, daratumumab, Velcade (bortezomib), and dexamethasone (Dara-SVD) to the usual treatment of daratumumab, lenalidomide, bortezomib, and dexamethasone (Dara-RVD) in treating patients with high-risk newly diagnosed multiple myeloma. Selinexor is in a class of medications called selective inhibitors of nuclear export (SINE). It works by blocking a protein called CRM1, which may keep cancer cells from growing and may kill them. Daratumumab is in a class of medications called monoclonal antibodies. It binds to a protein called CD38, which is found on some types of immune cells and cancer cells, including myeloma cells. Daratumumab may block CD38 and help the immune system kill cancer cells. Bortezomib blocks several molecular pathways in a cell and may cause cancer cells to die. It is a type of proteasome inhibitor and a type of dipeptidyl boronic acid. Dexamethasone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. Lenalidomide is in a class of medications called immunomodulatory agents. It works by helping the bone marrow to produce normal blood cells and by killing abnormal cells in the bone marrow. The drugs daratumumab, lenalidomide, bortezomib, dexamethasone and selinexor are already approved by the FDA for use in myeloma. But selinexor is not used until myeloma comes back (relapses) after initial treatment. Giving selinexor in the initial treatment may be a superior type of treatment for patients with high-risk newly diagnosed multiple myeloma.
This phase II/III trial compares the addition of nivolumab to the usual treatment of paclitaxel and ramucirumab to paclitaxel and ramucirumab alone in treating patients with gastric or esophageal adenocarcinoma that that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Ramucirumab is a monoclonal antibody that may prevent the growth of new blood vessels that tumors need to grow. Paclitaxel is in a class of medications called antimicrotubule agents. It stops cancer cells from growing and dividing and may kill them. Adding nivolumab to ramucirumab and paclitaxel may work better to treat patients with advanced stomach or esophageal cancer.
Patients will be registered prior to, during or at the completion of neoadjuvant chemotherapy
(Paclitaxel 175 mg/m2 IV over 3 hours and Carboplatin AUC 6 IV on Day 1 every 21 days for 3-4
cycles). Registered patients who progress during neoadjuvant chemotherapy will not be
eligible for iCRS and will be removed from the study.
Following completion of neoadjuvant chemotherapy, interval cytoreductive surgery (iCRS) will
be performed in the usual fashion in both arms. Patients will be randomized at the time of
iCRS (iCRS must achieve no gross residual disease or no disease >1.0 cm in largest diameter)
to receive HIPEC or no HIPEC. Patients randomized to HIPEC (Arm A) will receive a single dose
of cisplatin (100mg/m2 IP over 90 minutes at 42 C) as HIPEC. After postoperative recovery
patients will receive standard post-operative platinum-based combination chemotherapy.
Patients randomized to surgery only (Arm B) will receive postoperative standard chemotherapy
after recovery from surgery.
Both groups will receive an additional 2-3 cycles of platinum-based combination chemotherapy
per institutional standard (Paclitaxel 175 mg/m2 IV over 3 hours and Carboplatin AUC 6 IV on
Day 1 every 21 days for 2-3 cycles) for a maximum total of 6 cycles of chemotherapy
(neoadjuvant plus post-operative cycles) followed by niraparib individualized dosing until
progression or 36 months (if no evidence of disease).
This is a Phase 1/2, open-label, first-in-human, dose-escalation and expansion study of
SRF114, a monoclonal antibody that targets CCR8, as a monotherapy in patients with solid
tumors.
This phase II trial tests how well neratinib prior to the primary treatment (neoadjuvant) works in treating patients with stage I-III HER2 mutated lobular breast cancers. Neratinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of cancer cells. Giving neratinib in addition to normal therapy may work better in treating cancer than the endocrine therapy patients would normally receive.
This phase III trial tests how well adding dinutuximab to induction chemotherapy along with standard of care surgery radiation and stem cell transplantation works for treating children with newly diagnosed high risk neuroblastoma. Dinutuximab is a monoclonal antibody that binds to a molecule called GD2, which is found in greater than normal amounts on some types of cancer cells. This helps cells of the immune system kill the cancer cells. Chemotherapy drugs such as cyclophosphamide, topotecan, cisplatin, etoposide, vincristine, dexrazoxane, doxorubicin, temozolomide, irinotecan and isotretinoin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing or by stopping them from spreading. During induction, chemotherapy and surgery are used to kill and remove as much tumor as possible. During consolidation, very high doses of chemotherapy are given to kill any remaining cancer cells. This chemotherapy also destroys healthy bone marrow, where blood cells are made. A stem cell transplant is a procedure that helps the body make new healthy blood cells to replace the blood cells that may have been harmed by the cancer and/or chemotherapy. Radiation therapy is also given to the site where the cancer originated (primary site) and to any other areas that are still active at the end of induction.
This phase III trial compares the effect of the combination of fluorouracil, oxaliplatin, and leucovorin calcium (FOLFOX) or capecitabine and oxaliplatin (CAPOX) followed by limited surgery with transanal endoscopic surgery (TES) versus chemoradiation followed by TES for the treatment of early stage rectal cancer. The usual approach for patients who are not in a study is surgery to remove the rectum or treatment with chemotherapy and radiation therapy, followed by surgery. Fluorouracil stops cells from making deoxyribonucleic acid (DNA) and it may kill tumor cells. Leucovorin is in a class of medications called folic acid analogs. When used with fluorouracil, it enhances the effects of this chemotherapy drug. Oxaliplatin is in a class of medications called platinum-containing antineoplastic agents. It damages the cells DNA and may kill cancer cells. CAPOX is a combination of two drugs (capecitabine and oxaliplatin) and used as standard chemotherapy in treatment of rectal cancer. CAPOX works by damaging the DNA in tumor cells, and may cause the cells to stop growing and die. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill tumor cells and shrink tumors. This study will help researchers find out if chemotherapy with FOLFOX or CAPOX prior to surgery works better, the same, or worse than the usual approach and improves the quality of life in patients with early rectal cancer.
Subscribe to