Skip to main content

Displaying 151 - 160 of 189

Study of LY3537982 in Cancer Patients With a Specific Genetic Mutation (KRAS G12C)

The purpose of this study is to find out whether the study drug, LY3537982, is safe and
effective in cancer patients who have a specific genetic mutation (KRAS G12C). Patients must
have already received or were not able to tolerate the standard of care, except for specific
groups who have not had cancer treatment. The study will last up to approximately 4 years.
Not Available
I/II
Not Available
NCT04956640
VICCTHOP2155

A Study of Oral TP-3654 in Patients With Myelofibrosis

Leukemia

This study is a Phase 1/2, multicenter, dose-escalation, open-label trial to assess safety,
tolerability, pharmacokinetics and pharmacodynamics of TP-3654 in patients with intermediate
or high-risk primary or secondary MF.
Leukemia
I/II
Kishtagari, Ashwin
NCT04176198
VICC-DTHEM23002P

LCH-IV, International Collaborative Treatment Protocol for Children and Adolescents With Langerhans Cell Histiocytosis

Multiple Cancer Types

The LCH-IV is an international, multicenter, prospective clinical study for pediatric
Langerhans Cell Histiocytosis LCH (age < 18 years).
Miscellaneous, Pediatrics
III
Pastakia, Devang
NCT02205762
VICCPED2231

A Study with Tovorafenib (DAY101) as a Treatment Option for Progressive, Relapsed, or Refractory Langerhans Cell Histiocytosis

This phase II trial tests the safety, side effects, best dose and activity of tovorafenib (DAY101) in treating patients with Langerhans cell histiocytosis that is growing, spreading, or getting worse (progressive), has come back (relapsed) after previous treatment, or does not respond to therapy (refractory). Langerhans cell histiocytosis is a type of disease that occurs when the body makes too many immature Langerhans cells (a type of white blood cell). When these cells build up, they can form tumors in certain tissues and organs including bones, skin, lungs and pituitary gland and can damage them. This tumor is more common in children and young adults. DAY101 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Using DAY101 may be effective in treating patients with relapsed or refractory Langerhans cell histiocytosis.
Not Available
II
Not Available
NCT05828069
VICC-NTPED24012

Study to Compare Axicabtagene Ciloleucel With Standard of Care Therapy as First-line Treatment in Participants With High-risk Large B-cell Lymphoma

Lymphoma

The goal of this clinical study is to compare the study drug, axicabtagene ciloleucel, versus
standard of care (SOC) in first-line therapy in participants with high-risk large B-cell
lymphoma.
Lymphoma
III
Jallouk, Andrew
NCT05605899
VICCCTT2298

A Randomized Study Investigating Preoperative Chemotherapy Followed by Surgery versus Surgery Alone in Patients with High Risk Retroperitoneal Sarcoma, STRASS2 Trial

Sarcoma

This phase III trial compares the effect of adding chemotherapy (doxorubicin or epirubicin hydrochloride [epirubicin] with ifosfamide or dacarbazine) before standard surgery versus surgery alone in improving long-term survival in patients with retroperitoneal sarcomas that are able to be removed by surgery (resectable). Chemotherapy drugs, such as doxorubicin, epirubicin, ifosfamide, and dacarbazine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before surgery may make the tumor smaller and easier to remove and may increase patient survival, compared to surgery alone.
Sarcoma
III
Davis, Elizabeth
NCT04031677
ECOGSAREA7211

Combining Radiation Therapy with Immunotherapy for the Treatment of Metastatic Squamous Cell Carcinoma of the Head and Neck

This phase III trial compares pembrolizumab with radiation therapy to pembrolizumab without radiation therapy (standard therapy) given after pembrolizumab plus chemotherapy for the treatment of patients with squamous cell carcinoma of the head and neck that has spread from where it first started (primary site) to other places in the body (metastatic). Pembrolizumab is a type of immunotherapy that stimulates the body's immune system to fight cancer cells. Pembrolizumab targets and blocks a protein called PD-1 on the surface of certain immune cells called T-cells. Blocking PD-1 triggers the T-cells to find and kill cancer cells. Radiation therapy uses high-powered rays to kill cancer cells. Giving radiation with pembrolizumab may be more effective at treating patients with metastatic head and neck cancer than the standard therapy of giving pembrolizumab alone.
Not Available
III
Choe, Jennifer
NCT05721755
ECOGHNEA3211

CRISPR-Edited Allogeneic Anti-CD19 CAR-T Cell Therapy for Relapsed/Refractory B Cell Non-Hodgkin Lymphoma (ANTLER)

Multiple Cancer Types

CB010A is a study evaluating safety, emerging efficacy, pharmacokinetics and immunogenicity
of CB-010 in adults with relapsed/refractory B cell non-Hodgkin lymphoma after
lymphodepletion consisting of cyclophosphamide and fludarabine.
Lymphoma, Phase I
I
Oluwole, Olalekan
NCT04637763
VICC-DTCTT23155P

Testing Nivolumab and Ipilimumab Immunotherapy with or without the Targeted Drug Cabozantinib in Recurrent, Metastatic, or Incurable Nasopharyngeal Cancer

Head/Neck

This phase II trial tests how well nivolumab and ipilimumab immunotherapy with or without cabozantinib in treating patients with nasopharyngeal cancer that has come back (after a period of improvement) (recurrent), has spread from where it first started (primary site) to other places in the body (metastatic), or for which no treatment is currently available (incurable). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cabozantinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of cancer cells. Giving immunotherapy with nivolumab and ipilimumab and targeted therapy with cabozantinib may help shrink and stabilize nasopharyngeal cancer.
Head/Neck
II
Choe, Jennifer
NCT05904080
ALLHNA092105

Tiragolumab and Atezolizumab for the Treatment of Relapsed or Refractory SMARCB1 or SMARCA4 Deficient Tumors

Pediatrics

This phase I/II trial studies how well tiragolumab and atezolizumab works when given to children and adults with SMARCB1 or SMARCA4 deficient tumors that that has either come back (relapsed) or does not respond to therapy (refractory). SMARCB1 or SMARCA4 deficiency means that tumor cells are missing the SMARCB1 and SMARCA4 genes, seen with some aggressive cancers that are typically hard to treat. Immunotherapy with monoclonal antibodies, such as tiragolumab and atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
Pediatrics
I/II
Borinstein, Scott
NCT05286801
COGPEPN2121