Surgical Debulking Prior to Peptide Receptor Radionuclide Therapy in Patients with Well Differentiated Gastroenteropancreatic Neuroendocrine Tumors
Multiple Cancer Types
This phase IV trial evaluates how well giving standard of care (SOC) peptide receptor radionuclide therapy (PRRT) after SOC surgical removal of as much tumor as possible (debulking surgery) works in treating patients with grade 1 or 2, somatostatin receptor (SSTR) positive, gastroenteropancreatic neuroendocrine tumors (GEP-NETs) that have spread from where they first started (primary site) to the liver (hepatic metastasis). Lutetium Lu 177 dotatate is a radioactive drug that uses targeted radiation to kill tumor cells. Lutetium Lu 177 dotatate includes a radioactive form (an isotope) of the element called lutetium. This radioactive isotope (Lu-177) is attached to a molecule called dotatate. On the surface of GEP-NET tumor cells, a receptor called a somatostatin receptor binds to dotatate. When this binding occurs, the lutetium Lu 177 dotatate drug then enters somatostatin receptor-positive tumor cells, and radiation emitted by Lu-177 helps kill the cells. Giving lutetium Lu 177 dotatate after surgical debulking may better treat patients with grade 1/2 GEP-NETs.
Colon,
Esophageal,
Gastric/Gastroesophageal,
Gastrointestinal,
Liver,
Pancreatic,
Rectal
N/A
Idrees, Kamran
NCT06016855
VICCGI2283
Sacituzumab Govitecan and Atezolizumab for the Prevention of Triple Negative Breast Cancer Recurrence
This phase II trial investigates how well sacituzumab govitecan and atezolizumab work in preventing triple negative breast cancer from coming back (recurrence). Atezolizumab is a protein that affects the immune system by blocking the PD-L1 pathway. The PD-L1 pathway controls the bodys natural immune response, but for some types of cancer the immune system does not work as it should and is prevented from attacking tumors. Atezolizumab works by blocking the PD-L1 pathway, which may help the immune system identify and catch tumor cells. Sacituzumab govitecan is a monoclonal antibody, called sacituzumab, linked to a chemotherapy drug, called SN-38. Sacituzumab is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as TROP2 receptors, and delivers SN-38 to kill them. Giving sacituzumab govitecan and atezolizumab may work as a treatment for residual cancer in the breast or lymph nodes.
Not Available
II
Abramson, Vandana
NCT04434040
VICCBRE2056
Testing Chemotherapy versus Chemotherapy plus Radiotherapy Prior to Limited Surgery for Early Rectal Cancer
This phase III trial compares the effect of the combination of fluorouracil, oxaliplatin, and leucovorin calcium (FOLFOX) or capecitabine and oxaliplatin (CAPOX) followed by limited surgery with transanal endoscopic surgery (TES) versus chemoradiation followed by TES for the treatment of early stage rectal cancer. The usual approach for patients who are not in a study is surgery to remove the rectum or treatment with chemotherapy and radiation therapy, followed by surgery. Fluorouracil stops cells from making deoxyribonucleic acid (DNA) and it may kill tumor cells. Leucovorin is in a class of medications called folic acid analogs. When used with fluorouracil, it enhances the effects of this chemotherapy drug. Oxaliplatin is in a class of medications called platinum-containing antineoplastic agents. It damages the cells DNA and may kill cancer cells. CAPOX is a combination of two drugs (capecitabine and oxaliplatin) and used as standard chemotherapy in treatment of rectal cancer. CAPOX works by damaging the DNA in tumor cells, and may cause the cells to stop growing and die. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill tumor cells and shrink tumors. This study will help researchers find out if chemotherapy with FOLFOX or CAPOX prior to surgery works better, the same, or worse than the usual approach and improves the quality of life in patients with early rectal cancer.
Not Available
III
Eng, Cathy
NCT06205485
SWOGGICO32
Dinutuximab with Chemotherapy, Surgery and Stem Cell Transplantation for the Treatment of Children with Newly Diagnosed High Risk Neuroblastoma
This phase III trial tests how well adding dinutuximab to induction chemotherapy along with standard of care surgery radiation and stem cell transplantation works for treating children with newly diagnosed high risk neuroblastoma. Dinutuximab is a monoclonal antibody that binds to a molecule called GD2, which is found in greater than normal amounts on some types of cancer cells. This helps cells of the immune system kill the cancer cells. Chemotherapy drugs such as cyclophosphamide, topotecan, cisplatin, etoposide, vincristine, dexrazoxane, doxorubicin, temozolomide, irinotecan and isotretinoin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing or by stopping them from spreading. During induction, chemotherapy and surgery are used to kill and remove as much tumor as possible. During consolidation, very high doses of chemotherapy are given to kill any remaining cancer cells. This chemotherapy also destroys healthy bone marrow, where blood cells are made. A stem cell transplant is a procedure that helps the body make new healthy blood cells to replace the blood cells that may have been harmed by the cancer and/or chemotherapy. Radiation therapy is also given to the site where the cancer originated (primary site) and to any other areas that are still active at the end of induction.
Not Available
III
Benedetti, Daniel
NCT06172296
VICC-NTPED24104