Fluorescent nanoparticles clearly identified colonic adenomas precursors to colorectal cancer in mice and the formulation should translate to clinical use in humans.
This phase II trial compares the effect of usual treatment of docetaxel chemotherapy plus trastuzumab, to ado-emtansine (T-DM1) in patients with HER2-positive salivary gland cancer that has come back (recurrent), that has spread from where it first started (primary site) to other places in the body, or cannot be removed by surgery (unresectable). Trastuzumab is a form of targeted therapy because it works by attaching itself to specific molecules (receptors) on the surface of cancer cells, known as HER2 receptors. When trastuzumab attaches to HER2 receptors, the signals that tell the cells to grow are blocked and the cancer cell may be marked for destruction by body's immune system. Trastuzumab emtansine contains trastuzumab, linked to a chemotherapy drug called emtansine. Trastuzumab attaches to HER2 positive cancer cells in a targeted way and delivers emtansine to kill them. Docetaxel is in a class of medications called taxanes. It stops cancer cells from growing and dividing and may kill them. Trastuzumab emtansine may work better compared to usual treatment of chemotherapy with docetaxel and trastuzumab in treating patients with recurrent, metastatic or unresectable salivary gland cancer.
This phase II trial tests how well pB1-11 and human papillomavirus tumor antigen (TA-HPV) vaccines in combination with pembrolizumab work in treating patients with oropharyngeal cancer that has come back (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic) and that is PD-L1 and human papillomavirus (HPV) positive. Oropharyngeal cancer is a type of head and neck cancer involving structures in the back of the throat (the oropharynx), such as the non-bony back roof of the mouth (soft palate), sides and back wall of the throat, tonsils, and back third of the tongue. Scientists have found that some strains or types of a virus called HPV can cause oropharyngeal cancer. pBI-11 is a circular deoxyribonucleic acid (DNA) (plasmid) vaccine that promotes antibody, cytotoxic T cell, and protective immune responses. TA-HPV is an investigational recombinant vaccina virus derived from a strain of the vaccina virus which was widely used for smallpox vaccination. Vaccination with this TA-HPV vaccine may stimulate the immune system to mount a cytotoxic T cell response against tumor cells positive for HPV, resulting in decreased tumor growth. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread by inhibiting the PD-1 receptor. These investigational vaccines could cause or enhance an immune response in the body against HPV, during which time the activity of pembrolizumab against oropharyngeal cancer associated with HPV may be strengthened. These drugs in combination may be more effective in increasing the ability of the immune system to fight oropharyngeal cancer than pembrolizumab alone.
Paula Gonzalez Ericsson, M.D.
This phase II trial studies how well talazoparib works for the treatment of breast cancer with a BRCA 1 or BRCA 2 gene mutation that has spread to other places in the body (metastatic). Talazoparib is a study drug that inhibits (stops) the normal activity of certain proteins called poly (ADP-ribose) polymerases also called PARPs. PARPs are proteins that help repair deoxyribonucleic acid (DNA) mutations. PARP inhibitors, such as talazoparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. PARPs are needed to repair mistakes that can happen in DNA when cells divide. If the mistakes are not repaired, the defective cell will usually die and be replaced. Cells with mistakes in their DNA that do not die can become tumor cells. Tumor cells may be killed by a study drug, like talazoparib, that stops the normal activity of PARPs. Talazoparib may be effective in the treatment of metastatic breast cancer with BRCA1 or BRCA2 mutations.
An international coalition of biomedical researchers co-led by Vanderbilts Alexander Bick MD PhD has determined a new way to measure the growth rate of precancerous clones of blood stem cells that one day could help doctors lower their patients risk of blood cancer.
This phase III trial compares the effect of radiation therapy combined with hormonal therapy versus hormonal therapy alone in treating patients with low risk, early stage breast cancer with Oncotype Dx Recurrence = 18. Oncotype DX is a laboratory test which results in a score that is used to help predict whether breast cancer will spread to other parts of the body or come back. Radiation therapy uses high doses of radiation to kill cancer cells and shrink tumors but may result in some side effects. Hormones called estrogen and progesterone may contribute to the growth of breast tumor cells. Hormone therapy, also called endocrine therapy, may stop the growth of tumor cells by blocking or removing these hormones. This clinical trial may help researchers understand if patients with low-risk, early stage breast cancer who have Oncotype recurrence score of = 18 can safely omit radiation therapy and only be treated with hormonal therapy without losing any radiation treatment benefit.